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by
Hans G. Snay

ABSTRACT: This paper give:; a narrative description of the hydrodyr.amic
concepts which are important for the understanding of underwater explosion
processes with particular emphasis given to the physical background.
Mathematical developments are entirely omitted or kept to a minimum.

The paper describes the concepts of the various fluid motions and fluid
models involved in explosion phenomena. The properties of the shock front
;-e described and the interrelationship between the formation of the nuclear
bubble and the shock frcnt is pointed out. The properties of high amplitude
waves are outlined using Riemann's description. The formation of underwater
explosion bubbles is shown to be a hydrodynamic consequence of the spheri-
cal pressure wave emitted by the explosion. Such a wave always produces
a radial mass flow directed outward, the afterflow, which must lead to the
formation of a cavity. The acoustic approximation of pressure waves is
discussed in Appendix A. Appendix B contains comments on the entropy
concept.
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HYDRODYNAMIC CONCEPTS
SELECTED TOPICS FOR UNDERWATER NUCLEAR EXPLOSIONS

I. INTRODUCTION

1. 1 OBJECTIVE. It is the objective of this paper to lay down the funda-

mental concepts that are needed to fully appreciate the effects of underwater

nuclear explosions. Clearly, it is the aim of any presentation on this subject

(a) to explain the experimental results of underwater nuclear explosion tests

and (b) to interpret these so that the best possible and most far-reaching use

can be made of the data. Of these, the explanation of the experimental

evidence is the more important subject to be discussed, although the discus-

sion of theoretical considerations should not be omitted.

The experimental results of nuclear tests can ie presented in a concise

form which differs from the laborious way in which they were obtained. An

example is the account by Snay-Butler (1957) on the underwater nuclear shock

wave. This short report covers the practical aspects of the free-water shock

wave. A similar account could be given for the shallow water shock wave, the

bubble, surface phenomena, etc., but readers may not find the answers to

their questions in such reports. In any comprehensive presentation of

underwater nuclear explosion phenomena, it is necessary to describe the

experimental results as well as what can be done in a case where the results

are not readily applicable. The presentation must also show how the answers

are obtained and to what extent the answers are re. ' . .. To accomplish

these objectives, theory and scaling analysis must je used.

Very few underwater nuclear test explosions have been c.iducted. Theory

must be used to make up for the lack of complete data. For a long time,

only one test provided data on the free-water shock wave. Commonly,

confirming tests are required before data of this kind are considered to be

reliable; however, considerable confidence has been placed in these data
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because of the good agreement obtained between experiment and theoretical

results. This reasoning, which considers theoretical results to be equivalent

to missing confirming experiments, places a great deal of confidence on theory

which may or may not be justified. Therefore, it is important to scrutinize

such theories in order to see how much confidence they actually deserve.

The importance of theory becomes even more obvious if we realize that

a number of effects, which are of military importance, cannot be readily

measured in full scale tests, e.g., bubble phenomena. It will never be

possible or justifiable to make so many ntclear tests as to render theoretical

methods dispensable. In fact, those who have to take the responsibility of

planning nuclear explosion tests must be particularly aware of the possibili-

ties offered by theory or model testing. This is necessary to make sure that

there is an actual need for full scale tests and that the information desired

cannot be obtained by other means.

This does not mean that a discussion of underwluter explosion phenomena

should be a thesis on theoretical hydrodynamics; on the contrary, theoretical

details should be omitted wherever possible. But the underlying basic con-
cepts must be understood in order to appreciate the significance and the im-

plications of the experiments.

1.2 THE TWO FACES OF THEORY. In some respects theory may be

compared with, say, an electronic amplifier. Both are a maze of mysterious

items, mathematical symbols In one case, tubes, wires, resistors, capacitors,

etc., in the other.

When we use an amplifier, we seldom care about the design details but

are mainly interested in what it can do, such as amplification, frequency

response, and similar characteristics of performance. In the same way, the

mathematical development of a theory is only a portion or one facet of the

problem which concerns us. The most important question is:

What can theory do for us?

2
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Often, little or no mathematics is needed to answer this question.

Many consider theory with a certain mistrust for which there are

excellent reae-ons. Hydrodynamicists and other theoreticians, for instancc,

often surprise their listeners with bland statements that a particular problem

can be readily calculated, whereas others cannot. Such statements reflect

the correct and sometimes overlooked fact that certain problems are amenable

to theory and others are not. (The same statement also holds true for experi-

ments.) How can one judge whether or not a certain theory concerns a benign

case?

It is our contention that this judgment requires almost no mathematical

skills; it does require an understanding of a few basic physical concepts.

Neither theories nor amplifiers should be "black boxes" to those who

use them. There should be an understanding of their basic principles,

limitations, and abilities. We will attempt to further this understanding.

It is almost superfluous to state that such an understanding is helpful

not only in connection with theory, but also in the comprehension of the

meaning of experimental results and of the nature of encountered phenomena.

1. 3 APPROXIMATIONS. Calculations are sometimes made in which the

problem is .described in a thoroughly over-simplified manner. Often such

calculations involve factors or parameters which must be estimated ("fudge"

factors). These estimations are made in such a way chat the results confirm

existing experimental evidence. When applied to different conditions,

completely meaningless data are sometimes obtained. Such calculations

hardly deserve the name theory. On the other hand, the question of appr;xi-

mations is one which is of the greatest significance to us.

It is important to remember that any and every theory is more or less an

appropriate approximation. This is because it is neither possible nor

necessary to take all physical effects into account. The key to a successful

theoretical study li.s in the art of judging which approximations are

acceptable and which are not.

3
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There are two types of approximation:

a) Approximations in the physical description of the problem.

b) Approximations made in the mathematical execution.

Although both types of approximation are of decisive tmportance for the

success of a calculation, the physical approximations are of greater interest

to us. If the physical basis of a theory is poor, the best mathematics cannot

improve it.

1.4 SIMUIATION OF NUCLEAR UNDERWATER EXPLOSIONS BY MEANS OF

MODEL TESTS. A closely related field is that of model tests of nuclear

explosions. Model tests are highly important tools which may successfully

help to bridge the gaps in knowledge of many underwater nuclear explosion

effects. No one should expect offhand that a chemical explosive charge fired

underwater will simulate a nuclear explosion. When correctly planned and

interpreted such tests can be of immense value, but there are cases where

model tests are virtually useless.

Model tests and theory have one obvious fact in common: both are

approximations of the real event. Whether they are excellent, fair, or

unacceptable approximations depends on the circumstances. The understand-

ing of the basic physical concepts will go far in permitting judgment on the

quality of those approximations.

1.5 THE OBJECTIVE. It is our objective to summarize, in detail,

the physical concepts which are important in the field of underwater

explosions. This will be attempted In the simplest possible terms without

undue sacrifice in rigor. The difficulties of such an attempt are only too

well known. There is always the danger that some will object to the

lack of strictness or that others will find the presentation too lengthy.

Some readers may miss recipes for the quick calculation of underwater

explosion phenomena. This paper is not written to provide such instructions.

ror instance, it is not our objective to describe the quantiLative calculation

4
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of the entropy increase in the shock front, but rather to show why such an

increase takes place and what it means.

1.6 SUMMARY. The objective of this paper is to mediate between

hydrodynamic textbooks and weapon effects reports. The intention is to

further the understanding of the underlying basic principles of nuclear under-

water explosions. Such an understanding will permit judgment on the trust-

worthiness of experimental results, of theories, and of model tests.

5
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II. FLUIDS AND FLUID MOTION

2.1 FLUID MOTIONS OF EXPLOSIONJ: WAVES AND MASS MOTION.

The study of explosion phenomena is a specialized and highly fascinating

section of the physics of fluid motion. Although the term fluid motion may

occasionally convey the idea of a steady flow, the field of fluid motion

covers non-stationary problems. Among these are the rapidly changing and

short-lived phenomena occurring in explosions.

A phenomenon of particular interest is the formation and propagation of

waves. There are two distinct types of waves of concern: pressure waves

and surf- .e waves. The latter are of the familiar ,ype of ocean waves with

the exception that they are not formed by the wind but by the disturbances of U
the water surface cdused by an underwater explosion. Pressure waves are

the manifestation of the spreading of compression caused by the sudden

action of the pressure of an explosion.

Waves, like any other flow phenomena, are processes of transport. It

is a characteristic of wave motion that there is little or no significant

transport of material: a wave transmits a state, such as the elevation of the

water surface (Figure 2.1) or a rise of pressure, etc. Generally, waves are

a mode of energy transmission whereby energy is transferred from one

particle to the next. The speed of this transmission is called propagation

velocity; the maximum value of the magnitude transmitted, the amplitude.

Although the medium itself is not transmitted, it undergoes motions during

the passage of a wave. The velocity of this motion is called the particle

velocity.

The energy transmission in pressure waves is accomplished by the

evident way that each particle exerts pressure upon the next and, in this

fashion, passes a part or all of its energy to its neighbor. Another way of

energy transmission which occurs in nuclear explosions is that caused by

(Text continued on page 8.)

6
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TIME t

PARTICLE "a" PARTICLE UI

TIME t

2~.2

PARTICLE "a" PARTICLE "b"

Figure 2.1 - Waves on the Water Surface.

If a stone is dropped into water, circular waves emerge from the point

of disturbance. Omitting irrelevant details, the following is observed: In

the above sketch the origin of the wave is far to the left-hand side. At the

time t 1 the wave has reached particle "a" which is rising and falling while

particle "b" is at rest. At the later time t2 the wave has reached particle

"b". Now particle "a" is at rest and often at the position it had before the

arrival of the wav. There was a transport of energy but not of mass.

7
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electromagnetic radiation. This phenomenon is very pronounced in nuclear

explosions in air and also plays an important role in the formation process of

the nuclear underwater shock wave.

Besides waves, underwater explosions also originate mass motions.

These refer to a transport of material; for example, the pulsation and migra-

tion of the explosion bubble, the rising of the water column above the water

surface, or the formation of craters in the bottom.

2.2 THE FUNDAMENTAL EQUATIONS OF FLUID DYNAMICS. Excluding

the process of crater formation and other phenomena involving the bottom of

the sea, all types of waves and mass motions in underwater explosions are,

in principle, completely described by the pertinent solutions of the partial

differential equations of fluid dynamics. These equations are the basis of

all studies of fluid motion, not only for theoretical calculations, but also

for the evaluation of experimental results and the design of model tests

(scaling). These equations are derived from the principles of conservation

of momentum, mass, and sometimes energy, as well as the second law of

thermodynamics. Although the validity of these principles is beyond doubt,

uncertainties arise owing to the need to Eapproximate the mathematical treat-

ment of these equations and because of insufficient knowledge of the behav-

ior of the medium. It requires experience to choose the approximations which

are simple enough for expedient treatment but do not unduly sacrifice accuracy.

2.3 EULER AND LAGRANGE EQUATIONS. There are two types of coordi-

nate systems which can be used in these equations. One of these considers

a fixed point of observation past which the medium flows with constant or

variable speed. The equations which describe the flow seen from such a

fixed point are the Euler equations.

The other form of equations, the Lagrange equations, use a coordinate

system which moves with The fluid particle. For this purpose, it is

8
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necessary to identify the particle so that it can be distinguished from

others; this is done by a coordinate sometimes called the "Lagrangian

Label."

For the explosion phenomena this label is simply the position of the

particle before the moment of explosion. In a nuclear underwater explosion,

the particles adjacent to the bomb will be not only vaporized but also com-

pletely dissociated. These particles are subject to gamma, neutron, and

other rad:ation and become radioactive. Particles at longer distances are

dissociated, but do not become radioactive. At still greater distances the

water is vaporized and, finally, particles further out are heated but remain

liquid. All of these particles move, but the radioactivity and the entropy *

(which dominates the tendency to ionization and vaporization) are unaffected

by this motion. They are attached to each individual particle and move along

with it. In such cases, Lagrangian coordinates are particularly convenient.

Although the use of the Lagrangian equations has distinct advantages

in some cases, Euler's representation is preferable both from the mathemati-

cal and the physical point of view and is used in the majority of cases.

2.4 ON THE USE OF THE HYDRODYNAMIC EOUATIONS. We will not

give the derivation of the equations of fluid dynamics since it can be

found in any text of this subject. Instead, it will be attempted to acquaint

the reader with the dominant role which these equations play in the study

of fluid motions and with the methods of utilizing these equations.

It is important to point out that there are no general solutions of the

fluid dynamic equations. This is not surprising for two reasons. First,

these equations are of the non-linear type and therefore are not amenable to

elegant mathematical treatment. Second, these equations describe such an

I

* See footnote on page 14. L 1
9V
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immense manifold of different processes and flow patterns that such a solu-

tion, if it were possible, would be of extreme complexity.

Despite the absence of general solutions, the interpretation of these

equations provides a wealth of information. Most of our theoretical discus-

sions will be devoted to such interpretations. The reader will note that it is

often possible to derive relatively simple formulations of various problems by

means of a suitable and sometimes even highly elementary manipulation of

these equations.

2.5 MODELS OF FLUIDS. There are several "models" of fluid motion,

each of which is described (or defined) by a special set of partial differential

equations. For our purposes, the important models are (a) the incompressible,

non-viscous fluid motion, (b) the compressible, non-viscous fluid motion,

and (c) the compressible and viscous fluid motion. These three possibilities

are listed in order of increasing difficulties in the mathematical treatment.

Since it is always desirable to use the most simple approach, it is of great

importance to judge which of these models must be chosen. To do this, an

understanding is needed as to what bearing the properties of fluids have on

the phenomena to be studied.

2.6 PROPERTIES OF FLUIDS. "Fluid" is a broad term which covers any

non-rigid medium - in particular, gases, vapors, and liquids. The concept of

rigidaty is closely related to that of shear strength. Consider a cube of any

matte!r and assume-that this cube is deformed into the shape shown in Figure

2.2 without changing the volume. We are making the assumption of constant

volumes because every medium, even a gas, will react to a change of

volume. This is a result of compressibility and not of rigidity.

The change of shape shown in Figure 2.2 will not be resisted by a fluid if

it Is performed slowly. However, a steel cube will strongly resist atransfer

into such a configuration even if it is attempted at an extremely slow rate.

Hence, steel and other solids exhibit a rigidity which fluids do not have.

10
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Figure 2.2 - Illustration of Rig 1*id .

This definition of rigidity may seem surprising, but it is the shear

strength which prevents a vertical rod from falling apart as a liquid column

does, or prevents craters from leveling out like a dent in the water surface.

There are further differences, in particular the inability of gase. and liquids

to sustain tension. By tension we mean the opposite of compression, i.e.,

what engineers call tensile st:ess. It corresponds to a negative absolute

pressure for liquids (Article 2.10) but cannot occur in gases. There

are further differences between solids and fluids in the equation of state.

These details go beyond the scope of interest of this study.

If the change of shape shown in Figure 2.2 is produced in a fluid within

a very short time, i.e., at a high rate, there will also be a resistance.

This effect is called the internal friction of fluids and it is closely related

to the viscosity of fluids. In Figure 2.2, the cube may be visualized to

consist of a great number of infinitely thin parallel layers. Internal friction

is the resistance against the sliding of these layers.

[i 11
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2.7 VISCOSITY. This type of friction rarely occurs in underwater

explosions because of the absence of a sliding motion. A fluid motion

which would result in a deformation of particles as in Figure 2.2 is called

a rotational motion. Most of the motions we are concerned with are of the

irrotational form. However, there is another process where internal friction

becomes significant.

>-1
I--

,, PRESSURE WAVEO

V) X

(A .- B A

X 0-

DISTANCE DISTANCE

In igre2 .3 pressur-e and particle velocity of a pressure wave are
plotted versus distazice for a fixed moment of time. Internal friction occurs

predominantly at all places where rapid changes of the velocity profile occur,

or, to be more specific, at places where the radius of curvature of the curve

is small, such as at the points A and B, or within the region x-x. This form

of internal friction is analogous to that illustrated in Figure 2.2 but it is not

as self-evident. An inspection of the pertinent hydrodynamic equation will

demonstrate this phenomenon without difficulty. This equation (which

12
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expresses the principle of conservation of momentum) is for the case of

viscous fluid motion

(2.1) au + + 1 P
a t bx ax -xx

where u = particle velocity, p = density. P = pressure, v = kinematic

viscosity, x = distance, t = time. Equation (2.1) holds for a plane fluid

motion. The equation is called the Navier-Stokes equation. (The Navier-

Stokes equation incorporates certain approximations mentioned below, but

these will in no way affect our conclusions.)

The term on the right-hand side accounts for the effect of viscosity.

This term is inversely proportional to the radius of curvature of the velocity

profile which is in accordance with the statement made in connection with

Figure 2.3. Equation (2.1) reduces to that of a non-viscous fluid if this term

is omitted. There is no liquid or gas for which V is zero. However, one

may argue that, once the product of viscosity and the second derivative of

the velocity piofile is small in comparison with the othey terms, the non-

viscous fluid motion will Le a good approximation of the real flow. Although

this argument is valid, it 3.s not without pitfalls, since it is often difficult
2 2I

to estimate the value of b~ /6x . A classical example is the steady flow

across a cylindrical obstacle. The general flow pattern does not indicate

the presence of large second derivatives in the velocity. Still, the non-

viscous flow and that of a real fluid differ radically, even for a fluid of

minute viscosity, because in the boundary-layer close to the wall 6 u/6x

can reach very large values. In the study of underwater explosion phenomena,

care must be taken to separate all those cases where inclusion of viscosity

is important fromn those where it can be neglected. As will be seen, viscosity

has very little effect on the fluid motion except in the shock front.

* The radius of curvature of the u - x curve is

/0 1 u)2 3/2 / 6 2u+t

13
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Here, the viscous fluid motion is accounted for by the Rankine-Hugoniot

equations.

2.8 IRREVERSIBLE AND REVERSIBLE PROCESSES. Internal friction of a

fluid, as any other form of friction, is an irreversible process. A part of

the mechanical energy is transformed into thermal energy which leads to a
heating of the fluid. According to the second law of thermodynamics, this

thermal energy (or at least a part of it) cannot be retuined into mechanical

energy, and the original .state cannot be attained again. Therefore, viscous

fluid motion is an irreversible process or, in otbr words, the entropy of

the particles increases.

If we omit the right-hand term in Equation (2.1), i.e., if we consider

a non-viscous fluid motion, we have a reversible or isentropic process. In

this case every particle retains its value of entropy.

2.9 THE EFFECT OF COMPRESSIBILITY. Compressibility may be

visualized as the resistance of the medium against a change of volume. It

is well known that a gas can be compressed without building up high

pressures, whereas high pressure is needed to change the volume of water.

Hence, it might be said that gases are compressible, but water is almost

incompressible.

The compressibility of the medium is an extremely important factor in

explosion phenomena. Shock waves or blast waves which are produ-ed by

explosions are a direct consequence of the compressibility of the medium.

In their nature, these waves resemble sound waves, the difference being in j

the amplitudes and their limited duration. The amplitudes of sound waves j
are infinitesimally small compared with those of explosion waves.

* The concept of the entropy is often a stumbling block in the understanding
of such processes. In Appendix B an attempt has been made to describe a
few salient points of this concept as far as they are pertinent to our study.

14
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The velocity of propagation c of sound waves Is defined by

(2.2) c2  s
where the subscript S indicates differentiation with constant entropy.

This magnitude is not directly applicable to the propagation velocity

of high-amplitude waves, but plays an important role in the theory of these

waves. In particular, c is a measure of the compressibility of a medium.

(For most fluids, the sound velocity increases with pressure which indicates

that the medium becomes less compressible as the pressure rises.) At
atmospheric pressure and room temperature c = 332 m/sec for air and

c = 1465 in/sec for water. The difference in these velocities is less th:an d

casual observation of the compressibility of these media would seem to

indicate. The reason for this is that at this point we consider the effect of

compressibility in connection with pressure waves. In such a case the

assumption of an incompressible medium is not appropriate for water; it would

mean an infinitely high propagation velocity of sound as well as high

amplitude waves. Nevertheless, interesting and useful attempts at an

"incompressible" shock wave treatment have been made, e.g., Schauer (1948).

Theories which are at such variance with the actual physical picture need

careful scrutiny as to their validity and significance. Today, efforts of this

type have been superseded by the advances in the theory of compressible

fluid motion.

In the case of mass motions such as in bubble pulsations and in the case

of surface waves, the term compressibility has a different meaning. It refers

here to the change of the density (or jolume) as a function of pressure. For

water and moderate pressures, these changes are negligibly small. The

incompressive fluid motion is a good approximation in such cases.

A quantitative measure of the effect of the compressibility in a flow

process is the Mach Number

(2.3) M = u
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where u is the particle velocity (for instance the maximum fluid velocity

occuring in the phenomenon considered) and c the sound velocity. The

case of "low" pressure is denoted by values of M which are small com-

pared with unity, say M = 0.1. For such small Mach numbers, pressure

waves can be approximated by the laws of sound waves (acoustic theory),

and mass motions by the laws of an incompressible fluid.

2.10 LIQUIDS. In general, the laws of motion are the same for liquids

and gases. Of course, the pertinent material constants must be used in

either case. Phase changes, namely melting, freezing, or vaporization intro-

duce additional problems, although the basic treatment remains the same. In

underwater explosion phenomena, evaporation as well as freezing of water

may occur. The latter may be caused by the high pressures of the shock

wave and w1ll be discussed in the section on the equation of state. Water

is vaporized near a nuclear underwater explosion, thus forming the nuclear

explosion bubble.

Cavitation is a special form of evaporation caused by dynamid under-

pressures, such as those caused by the reflection of a pressure wave from

the water surface. Cavitation is the result of the inability of water to

withstand tension. Theoretically, clean and gas-free water can be

subjected to a negative pressure equal to the cohesion pressure (which is

about 3 kilobar = 4.3.10 4 psi) before "breaking," i.e., boiling.

Experimental values depend on the degree of purity achieved for the liquid

and the walls of the container; values up to 0.3 kilobar have been reported.

Sea water always contains a great number of impurities which act as

"cavitation nuclei." Since the surfaces of these impurities are often

hydr( phobic (water repellent) there is little or no adhesion at the interface

which could oppose tension. Therefore, bubbles are formed at such nuclei

ab Soon as the pressure drops below either vapor pressure or the saturatic-i

* See Chapter IV of the book "Underwater Nuclear Explosions."
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pressure of the dissolved gases. The expansion of these bubbles prevents

the occurrence of any substantial tension.

In principle, the hydrodynamic equations also describe cavitation pro--

cesses, but the equations assume different forms fo)r the cavitated and un-

cavitated areas. Pressure waves in non-cavitat.d water, for instance, can

be approximately described by the wave equation, s,;e Appendix A. Wherever

cavitation occurs, the wave equation is not applicable.

2.11 SOLIDS. Since the bottom of the sea affects underwater nuclear

explosion processes, the properties uf solid materials are of some concern

to us. As explained above, there are two significant differences between a

liquid and a solid: a liquid lacks shear strength and tensile strength whereas

solids have both of these properties and, because of them, exhibit their

characteristic behavior.

If we consider an irrotatiornal fluid motion, no sliding (as depicted in

Figure 2.2) occurs; therefore, shear strength does not come into play. If, in

such a phenomenon, compression alone occurs, fluid motion will simulate

the actual behavior of solids with acceptable accuracy. For example, in the

treatment of shaped charge effects on steel plates, notable success was

obtained by assuming that steel behaves like a heavy liquid. This treatment

breaks down when the applied forces are less than the yield strength of the

medium.

This treatment, the so-called liquid model, has been used in studies of

underwater explosion phenomena. The model of a liquid bottom is useful in

the description of the crater formation, the effect of the bottom on the pul-

sating bubble, and the bottom reflection of underwater explosion shockwaves.

When the pressure wave of an underwater explosion impinges upon the

bottom, one part of the incident wave is reflected backward into the water,

and another part enters the bottom (refracted wave). In a rigid bottom, the

refracted wave commonly consists of a compression wave (?-wave) and a

17
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shear wave (S-wave). Both the P- and the S-wave carry energy down into

the bottom. The energies of the reflected wave plus Lhe refracted P- and

S-waves are equal to the energy of the incident wave. If the amplitudes of

the reflected wave are calculated, higher values are obtained for a liquid

than for a rigid bottom, if all other parameters are the same. This is because

the energy carried away by the S-wave is ignored. In many practical appli-

cations, however, the difference is not significant.

2.12 SUMMARY. Explosion phenomena are processes of fluid motion.

They are described by the fundamental equations of fluid dynamics. The

equations admit four models of a fluid, depending cn the inclusion or omis-

sion of compressibility and viscosity. The term "fluid" designates any non-

rigid medium: gas, vapor, or liquid. A fluid lacks shear strength. Vis-

cosity or internal friction is the property of a fluid which opposes the rate

of shear. Viscous fluid motion dissipates energy. An inviscid fluid motion

is reversible (and vice versa). If the motion is irrotational, no shear defor-

m Ltion occurs.

Compressibility refers to the reaction against a change of volume. The

Mach number is the measure of the effect of compressibility in a flow pro-

cess. If the Mach number is small, the acoustic approximation is applicable

to pressure waves and the theory of incompressible fluid dynamics is appli-

cable to mass motions.

Although a liquid can theoretically be subjected to a tensile stress, an

actual liquid, in particular sea water, "breaks," i.e., cavitates, almost

immediately.

In some cases the motion of solids can be approximated by that of a

liquid; for instance, the effect of the bottom of the sea can be studied by

using the model of a liquid bottom.

18
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III. THE SHOCK FRONT
,

3.1 PROPERTIES OF A SHOCK FRONT . A shock front is a jump in

pressure, velocity, density, and temperature. It occurs most often, but

not always, when a pressure wave of high amplitude runs into an undisturbed

medium. The medium is at rest up to the moment of the arrival of the

shock front. When the shock front passes the point of observation, the pres-

surd and the other magnitudes undergo a rapid, almost discontinuous, change.

Behind this thin region of rapid rise, we have the beginning of the shock

wave. In most cases the pressure of shock waves decreases behind te

shock front. The characteristic difference between the front and the subse-

quent wave is the rate of change in pressure, velocity, and density. This

rate of change is extremely rapid within the front, but comparatively slow in

the wave which follows.

In an era where problems of supersonic flight and atomic explosions are

widely discussed, shock waves appear to be a familiar subject to everyone.

Few realize that a shock wave is a rather unusual physical phenomenon.

Although everyone is willing to grant that jumps rarely occur in nature on a

macroscopic scale, a discontinuous rise seems to be entirely acceptable for

a shock wave. Actually, a shock front is strictly not a discontinuity and the

steep rise of pressure at the front of shock waves is a result of specific

circumstances which are significant not only for the theory of shock waves,

but also for a general understanding of their behavior.

The following development of the fundamental properties of a shock

front together with an historical account, is not done for the sake of literacy.

In this Article, energy transfer by radiation processes is excluded.
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It is interesting as well as revealing to note that eminent scientists in the

past have had difficultie, in visualizing and understanding this phenomenon.

4 Analy2ing these difficulties in retrospect w!ll gi re us a clear insight into the

nature of the problem.

3.2 PRESSURE WAVES. Newton (1713) was the first to attempt to

analytically describe pressure waves in a compressible medium. He derived

an expression for the propagation velocity of sound in air. This equation was

based on the assumption that the change of density is proportional to the

change of pressure, or in thermodynamic terms, on an isothermal change of

state. Inserting the proper magnitudes into his equation yielded

Sound velocity in air = 280 meters/sec.

This velocity is now known to be too low. Laplace (1816) improved Newton's

formula by the introduction of the isentropic which was previously called the

adiabatic change of state. His improved formula yielded

Sound velocity in air = 332 meters/sec.

This value agrees with the best measurements known today and Laplace's

formula is one of the classic triumphs of theoretical physics. The confidence

in Laplace's formula has become so great that his formula is being used to

determine the isentropic exponent of gases by measuring sound velocity. This

relationship brought about a change in thinking concerning the effect of heat

conduction. Newton's equation is in accord with the accepted fact that any

rise in temperature will be reduced and finally equalized by heat conduction.

Laplace's result established that heat conduction can be neglected for rapid

temperature changes. In fact, pressure waves in compressible media

constitute one of the rare examples where an isentropic change occurs in

nature. Stokes and Lord Rayleigh further firmed this thinking by including

viscosity and heat conduction in this relationship. For ext.-me conditions

20
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at very high frequencies, with rapid changes in amplitude, it is necessary to

correct for these effects. Excluding such extreme conditions (which obviously

prevail at a shock front), the isentropic change of state is appropriate for

pressure waves. This means that such waves are reversible processes.

3.3 RANKINE WAVES. At the time when this line of thinking was firmly

established in 1870, Rankine derived his renowned relationships for a
"stationary wave," as he called it. It was not Rankine's intention to con-

sider a shock front, but rather a plane wave of high amplitude which does not

undergo changes as it propagates. Figure 3.1 illustrates the situation.

P I-- U11P1  EU

U
~x \

U.'

P. 0 P o f Po0 E0

F x

DISTANCE

Figure 3.1 - Rankine Wave.
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The wave is assumed to propagate from left to right with the velocity U. In
the general case, the medium ahead of the wave may not be at rest. Before

arrival of the wave there is a density p0, a pressure Po. a particle velocity

uo , and internal energy E . For Rankine's investigatioits, details of the

increase of pressure and other magnitudes do not matter, i.e., Ihe structure

of the dashed portion x-x in Figure 3.1 is irrelevant. The essential point is

that the pressure PI, particle velocity u,, and density p1 behind the increase

remain constant. Application of the principles of the conservation of mass,

momentum, and energy yield the well-known relations

(3.1) p1 (U- u1 ) = po (U- uo )

(3.2) po (U- uo ) U1 =P 1 - Po
P1 +  ol. _l_

P +P
j(3.3)E-E=1 01 .I)I1 o 2 p p1

I 0 (Vo- v)

2 o 1

Here E denotes the internal energy and v, the specific volume v 1/p.

Nineteen years after Rankine, Hugoniot published essentially equivalent

relations. Obviously, he had derived these independently of Rankine. It has
become customary to call equations (3. 1) to (3.3) the Rankine- Hugoniot

relations.

3.4 THE RANKINE-HUGONIOT ADIABAT. Of particular significance is

the energy equation (3.3) which is often called the Rankine-Hugoniot adiabat.
This equation resembles that for an isentropic change of state, which for

infinitely small changes of pressure or density is given by

(3.4) dE = - Pdv

22 Al
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whereas (3.3) amounts to

(3.5) LE P AV.average

For infinitely small pressure changes, the isentropic (3.4) and the Hugoniot

adiabat (3.5) coincide. Of course, for finite amplitudes, for which (3.5) has

been specifically derived, the isentropic (obtained by the integration of (3.4))

differs from the Rankine-Hugoniot adiabat. The most significant difference is

that the entropy is not constant along the Rankine-Hugoniot adiabat (3. 3).

Hence, a Rankine wave is necessarily an irreversible process. This

was recognized by Rayleigh 40 years after Rankine's publication. Rayleigh

pointed out that the Rankine wave is physically possible only for compres-

sions, but not for expansions in which the entropy would decrease. Rayleigh

further pointed out that at the front of a Rankine wave a dissipative process

must occur within the region of the pressure increase. This was in 1910,

Just before the First World War. At this time many workers did not believe

that a Rankine wave would occur in nature. As late as the 1932 edition of

Lamb's classical "Hydrodynamics", doubt was cast on the validity of the

Rankine-Hugoniot relations, stating: "no physical evidence is adduced in

support of the proposed law."

3.5 RIEMANN WAVES. This feeling of doubt becomes understandable if

we realize that long before Rankine, Riemann (1860) established his famous

relationships for high-amplitude waves (described in Article 4.3), which

seemed to include the case of a stationary wave. But in contrast to Rankine's

result, Riemann's equations involved an isentropic change of state which, in

the line of thinking of that time, may havc appeared to be more reasonable

and acceptable. On the other hand, application of Riemann's propagation

theory to a stationary wave leads immediately to a discrepancy shown in

Figure 3.2.
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pt

P 2

Cr P0

K DISTANCE

Figure 3.2 - Step Wave (According to Riemann's Theory). j

Assuming a plane and stationary wave, Riemann's theory can be

interpreted that each point of the wave travels with the velocity c + u.

Points behind the head of the wave remain stationary because the pressure

and, therefore, c, as well as u, is constant. However, the head of the

wave does not remain stationary. Since c + u increases with increasing

amplitude, points of the head which have a higher pressure move faster

than those of lower pressure. Theoretically, this would lead to the con-

figuration of the head (shown in Figure 3.2) which, at the right-hand side,

depicts the same wave for a later moment of time. Such a configuration

would mean that three different pressures occur at the same time and at the

same place (namely, PoI P, and P2 ), which is physically impossible.

Earnshaw reached a similar conclusion in 1858 on the basis of a mathe-

matical manipulation of the hydrodynamic equations, namely, that a

stationary pressure wave of high amplitude is incompatible with an isen-

tropic change of state.
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3.6 THE SHOCK WAVE PARADOX. Since the mathematical validity of

Rankine's as well as Riemann's theory was beyond doubt, the workers of

these times were confronted with a highly perplexing paradcox which probably

induced many of them to let the matter rest.

Today, we understand that the prerequisite for a Rankine wave is an

energy dissipation within the region of the rise. The pressure curve dashed

in Figure 3.1 must be just so steep that the energy dissipation due to

viscosity is such that the Rankine- Hugonit adiabatic (3.3) is satisfied.

The Rankine-Hugoniot equations refer tu the motion of a viscous fluid.

The circumstance that viscosity does not appear in these equations must

not obscure this fact. It is not necessary to know these magnitudes, if - as

in the Rankine-Hugoniot treatment - only the initial and final state of the

process is considered. If it is desired to calculate the details of the

pressure rise, viscosity and heat conduction must be explicitly introduced.

It was not until the end of Worl' Mar I that the existence of shock

waves was established by sev .ral workers such as Ruedenberg (1916),

Becker (1922), and notably Stodola (1924) who produced experimental evidence

of shocks in steam nozzles. It had taken almost half a century until the

correct interpretation of Rankine's equations was achieved.

We now return to Artic.e 2.7 where the effect of viscosity on the shock

front was discussed. A fluid with zero viscosity is called ideal. Such

fluids do not exist and there is a difference between an ideal fluid and a

real fluid of vanishing, but finite, viscosity. Figure 3.2 is a correct

representation of a "shock" wave in an ideal fluid. It represents a

physical unreality, since three different pressures cannot occur at the same

time and the same place. The exactly analogous, but less striking evidence

of ideal fluid behavior is d'Alembert's paradox (1744): the drag of a body
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in an ideal fluid is zero. Both d'Alembert's paradox and the shock wave

paradox show one and the same thing, namely the limited scope of the ideal

fluid model. Real fluids, even if their viscosity is exceedingly small, do

not lead to these paradoxes: there is (a) a boundary layer around the body

(Prandtl, 1904) and jb) a shock front at the head of the pressure wave.

These paradoxes are illustrated in Figure 3.3.

The flow is irreversible and rotational within the boundary layer and

shock front. Outside these regions the assumption of an ideal fluid, i.e.,

of a reversible and irrotational flow, gives reliable results.

It is easy to see in hindsight that these intricacies of the ideal fluid

model played a big role in the difficulties which the 19th century had in

this field. The clarification of these paradoxes and the understanding of

the scope of the ideal fluid model is an achievement of modern 20th century

physics, although it is less glamorous than those in other sections of this

science.

3.7 THE THICKNESS OF THE SHOCK FRONT. This clarification did not

conclude the arduous process of obtaining a grasp of the nature of the

shock front. A new stumbling block arose - the thickness of the front. As

shown in Figure 2.3, the thickness of the front is that region where the

effect of viscosity is predominant, i.e., the region x-x. Turning to

Figure 3.1, the thickness of the front x-x designates the closest points of

a step wave between which the Rankine-Hugoniot conditions are applicable.

Calculations by Becker and others indicated such an extremely steep rise

within the shock front that the thickness of the front would be something like

the mean free path of a molecule. It took about 30 years more to explain

and correct this controversial result. H

Truesdell (1952), Gilbarg-Paolucci (1953), and Lighthill (1956) finally U

found that the Navier-Stokes equation is not suitable for these calculations

and must be replaced for dynamical problems by another equation which

(Text continued on page 28.)
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iDEAL FLUID REAL FLUID
FLOW AROUND A CYLINDER

POTENTIAL FLOW

-- WAKE

NO DRAG .. .. FINITE DRAGI- -

r VELOCITY PROFILE VELO.,ITY PROFILE-
NEAR WALL: SHARP CURVATURE IN
NO SHARP CURVATURE, U OUNDARY LAYER

PHYSICALLY NOT POSSIBLE

WALL WALL

PRESSURE WAVE

DTHREE VALUES OF
PRESSURE AT THE SAME SHOCKFRONT

, TIME AND PLACE Uj

DISTANCE DISTANCE

The model of an ideal fluid is an important tool of fluid
dynamics. The model fails and leads to paradoxes when
the second derivative of the velocity with respect to

distance becomes predominant.

Figure 3.3 - Behavior of Ideal and Real Fluids.
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omits some terms in the Navier-Stokes equation and introduces others. On

the basis of these investigations, it has now been established that the rise

within a shock front is coitinuous, but steep. The transition takes place

within a distance which is a multiple of the mean free path of a molecule,

and depends on the strength of the shock wave as well as on the distance

traveled. The thickness of underwater explosion shock fronts is very small

near the point of explosion and increases gradually as the wave travels

away.

To Summarize: The shock front comprises a region of finite thickness.

The Rankiiue-Hugoniot relations hold for the conditions at the beginning and

at the end of that region, i.e., for x,x in Figure 2.3. Note that, strictly

speaking, .he shock wave peak pressure does not necessarily coincide with

the pressure P1 behind the front occurring in the Rankine-Hugoniot equations.

This is illustrated in Figure 2.3:P1 would occur at the left-hand x. How-

ever, for almost all practical purposes in explosion research this distinction

is a trivial one and may be ignored. Furthermore, for almost all problems

in weapons effect studies the shock front may be regarded as an infinitely

thin region, i.e., as a discontinuity. (In the latter case, shock waves

relatively close to the point of explosion are of interest.)

3.8 EQUATIONS DESCRIBING SHOCK FRONT PARAMETERS. In the

following, a few of the important relations which can be derived from the

Rankine-Hugoniot equations are summarized. The symbols are explained in

Figure 3.1 and Article 3.3.

Propagation velocity of the shock front

P-P
(3.6) U= u + V v -o
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Particle velocity of the shock front

(3.7) u -u°  (v v

The following combinations of these equations are sometimes useful

U - u1  Pl U -U Pl

(3.8) U- pl-P ; U-u 1  P

A magnitude of great importance in shock wave calculations is the

sound velocity c, defined by

(3.9) c = = -V 2
ST S

There is no simple relationship of general validity for the sound

velocity behind the shock front, cI, in terms of other shock front parameters.

The sound velocity must be calculated together with the Rankine-Hugoniot

adiabat using standard thermodynamics and equation of stbte data.

Closed expressions can be obtained if the medium has the properties of

an ideal gas. In this case

(3.10) E - and
' -1

2 o
(3.il) c oY Pv

where Y0 is the isentropic exponent. Introduction of (3.10) into (3.3) gives

the Rankine-Hugoniot adiabat for an ideal gas

(Y + 1) v - (y 1)v 1
0 (2 P1 =  ) vI  (Y 0° - 1) v 0
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2y°Po + (7° - 1) (PI - Po)(3.13) vI = v
1 02YP + (Yo + 1) (P - P)

For comparison we note that the true adiabat or isentrope reads

0

(3.14) 1 =P (v)Y

For small differences between P and P, both adiabats (3.12) and (3.14)
1 

coincide, but they exhibit an entirely different behavior for large pressire

differences .
The entropy increase across the shock front for an ideal gas is

(31JS-S= c in P,+ c In I-(3.15) S1 - c v P- 0 p v 
0 0

where c and c are the heat capacities at constant pressure and volume,
respectively.

3.9 GAMMA FOR IDEAL GASES AND FOP, REAL MEDIA. It must be

stressed that the relations (3.10) through (3.15) hold for ideal gases only.

For an ideal gas the relation y = c /c is valid. For an imperfect medium,

water in particular, the ideal gas relations are not applicable. Then, y is

not c /C but is given by a more general equation, which for ideal gases

reduces to this ratio. For a non-ideal medium, the ratio c /c has nop v

practical thermodynamic significance related to fluid mechanics. It must be

noted that the general definition of y in fluid dynamics is

2 ( a1n PnP
(3.16) "= v 6 nv)
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For an imperfect medium, equation (3. 10) takes the form (Snay, et. al.

1956)

(3.17) P + 1 + 6 1nE/Pv) S

This expression reduces to equation (3.10) if the last term vanishes.

Although not strictly valid, the ideal gas relation (3.10) has been applied to

the highly compressed and imperfect gaseous detonation products of explo-

sives, Jacobs (1956). Such approximations can be of great value. For water,

no attempt of this kind has so far met with notable success.

3.10 HIGH PRESSURE REGION OF THE RANKINE-HUGONIOT ADIABAT.

Ideal gas relations may become applicable at extreme temperatures where

the medium is completely dissociated and ionized. Several workers have
0treated such a plasma as an ideal monatomic gas for which y = 5/3.

If the pressure P1 in the Hugoniot relation (3.13) Is increased to large

values, the specific volume becomes

(3.18) lim V---V o
O +o

1Y

-- 0.25 v for a monatomic ideal gas

and it is seen that in a Rankine-Hugoniot process, the density p1 = i/vl

cannot be increased by high pressures beyond a certain value, such as 4 -p-
00

ify =5/3.

The ideal gas approach is justified for exceedingly high temperatures

and moderate densities. For conditions, as they occur in underwater nuclear

explosions, the electrons may not behave like an ideal gas, but like a

31
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degenerate Fermi-Dirac electron gas, see Latter and Latter (1955). Figure

3.4 illustrates the various possible forms of adiabats for water.

3.11 EQUATIONS FOR LOW PRESSURE. It is also possible to derive
relations for the low pressure end of the Rankine-Hugoniot adiabat. Kirkwood-

Montroll (1942) obtained the follow ing power series applicable to low

pressures:

(3.19) v2 + --o P ....)

2 2P 
O

KP c
i.2M) U-u =c (1+ 0 0

o o4.... O"4 ..... /

(32)( Kpo Co1 0
(3.21) uI - u: - - (1- p.

3 4

(3.22) c= C (1 +( 2 c2 .-
p c

0 0

(3.23) S1 - o - 12  T P ......
0

where2 0.017 cc/kilobar2 gm

c sound velocity) in the medium

) before the
T = temperature ) shock front

0

p = excess pressure P- P
0

For approximate calculations, the following numerical values may be used:2
c = 1480 m/s and p c = 22 kilobar. These values hold for fresh water

at a temperature of 200C and sea water of 80c; conditions which often
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prevail in experimental testing oi in-the Atlantic. The corresponding values

of v are 1. 0002 gm/cc and 0. 976 gm/cc, respet&Veyi.-r more detailed j
information, a paper on the equation of state of water should be corsulted. ]

Of particular importance is relation (3.23) which shows that for low

pressures, the entropy increase is proportional to the cube of the pressure

amplitude, p. This means that the entropy increment is small for low !
pressures. Hence, for vanishing amplitudes, the Rankine-Hugoniot

adiabatic becomes a reversible process. This is one of the justifications of

the "acoustic" approximation for shock wa res which will be further

discussed in Article 4.5 and in Appendix I. Furthermore, equation (3.20)

shows that the propagation velocity of the shock front running into a still

medium (u° 
= 0) approaches the speed of sound forvanishing pressure.

Although it is possible to make statements about the low pressure and

very high pressure region of the Rankine-Hugoniot adiabat, the entire

intermediate region must be laboriously calculated on the basis of P-v-T data

for water. Details go beyond the scope of this paper.

Figure 3.4 illustrates the two adiabats, the Rankine-Hugoniot curve

and the isentrope.

3.12 ENERGY DISSIPATION AT THE SHOCK FRONT. We have seen that

a prerequisite of the existence of a shock front is that there is a certain

amount of irreversible energy dissipation. A conspicuous evidence of this

energy dissipation is that the temperature of a particle has increased from

T 0 to Toi when the shock wave has passed over it and after the pressure

has returned to its original value. To heat the particle a certain amount of

energy is required. Since we consider a process where the initial and

final point are at the same pressure, namely the hydrostatic pressure of the

undisturbed wter, then this energy corresponds to an increase of the heat

contents at constant pressure, i.e., of the enthalpy H which is simply

(Text continued on page 35.)
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106L IDEAL GAS FOR HIGH
TEMPERATURES & PRES3URES

2" THOMAS -FERMI
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1.0 - _____,____102 ,
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Figure 3.4 - Isentrope and Rankine-Hugoniot Adiabat for Water

(Schematic)

Isentrope and Rankine-Hugoniot adiabat coincide for low pressures.

The Rankine-Hugoniot curve as an asymptote for v = 0.25 gram/cc, if ideal

gas relations are assumed for high pressures and temperatures, implying com-

plete dissociation and ionization as well as non-degenerate electrons. De-

pending on the variation of y along the curve, the asymptote may be

approached from either side.

If a degenerate electron gas is assumed, the Rankine-Hugoniot curve

approaches an asymptote resulting from the Thomas-Fermi model for highly

compressed media_
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(3.24) H= H h = c (T oi- T )
( )o p o ,o

where c is the heat capacity at constant pressure. The magnitude h isp
called "the dissipated enthalpy increment." Another term occasionally

used is "waste energy." The expression for h can be readily obtained

from (3.3) and (3.4) with the use of the thermodynamic identity H = E + Pvt

PP

(3.25) h_ 2 (v+ v1 )- v(P, S const) dP.

0

Figure 3.5 illustrates the meaning of this relation in a P-v diagram. The

curve extending from the point A, (P , v 0) to point B, (P v ) is the

Rankine-Hugoniot adiabat. The dashed curve between B and D, (Pc , vo)

is the true adiabat, i.e., the isentropic. The compression, which a fluid

particle undergoes when the shock front passes over it, is described by

the Rankine-Hugoniot curve, whereas the expansion behind the shock front

follows the isentropic curve. The increase of the specific volume v . - v 0

is the consequence of the heating of the water particles by the irreversible

processes occurring in the shock front.

The diagram of Figure 3.5 allows for the following interpretations:

The heat content at the point P, v I is

(3.25a)HI -H - 2 (vo+ v) area of trapezoid A BB C 0(.5)H-H ° _ 2 oo1oo

This constitutes the first term of equation (3.25). The second term of this

equation is

Pf

(3.25b) H1 - H v(P, S-const) dP = area D B B C bound by

the dashea curve. o

VText continued on page 37.)
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Figure 3.5 Interpretation of the Dissipated Energy.

When fluid is compressed in a shock front, the pressure P changes as
a function of the volume v according to the Rankine-Hugoniot relation. Ex-
pansion occurs along the isentrope. Thus, the original state, P , v , is not0 0
obtained after the gas has re-expanded to Po: the process is irreversible.

This diagram allows for geometric interpretations which are due to
Porzel (1956).

Lj
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Thus, h, which is the difference between these two terms, is the shaded area

in Figure 3.5.

TAere are further interpretations which are interesting, but not always

useful. According to (3.3) and (3.7)

u12/
(3.26) E1 -E +U2 =/ P (v - ) for u =0

0 1 l1o 1 0

which is the area of the rectangle A C B F. Thus, this area represents

the total energy of the particle behind the shock front. The kinetic energy

of this particle is given by

(3.27) u1
2 /2 =  (P - ) (v - vl)/2, V

hence the area of the triangle ABC.

A crude approximation for h can be obtained by ignoring the difference

v . - v , i.e., letting the points A and D coincide (Porzel 1956). Then h

is equal to the lens-shaped area between the Rankine-Hugoniot curve and

the chord AB. For water and moderate amplitudes, this approximation is nQt

objectionable. It breaks down, as its originator has clearly stated, when

the energy-dissipation is so large that water is vaporized after the passage

of the shock wave. Then, v . and v differ so much that the accuracy of the

above approximation becomes unacceptable. Since relatively accurate equa-

tion of state data are available for water in the low and medium pressure

range, h can be calculated directly without recourse to this approximation.

3.13 ENTROPY AND DISSIPATED ENTHALPY. The magnitude h is closely

connected with the entropy increase within the shock front: h would be zero

if the shock adiabat were an isentrope. The interrelationship between

entropy and dissipated enthalpy is given by (Snay, et. al. 1956)
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h T (S, P = Po) dS

(3.28)
S--

pp

where T 0and S are the temperature and entropy respectively before the

passage of the shock front. The magnitudes Z and W are the mean andp p
logarithmic average heat capacity respectively:

c dT

(3.29a) 0p T -T ,

T dT

p T

(3.29b) 1p In(T/T 0

For water, - and ' differ only slightly from the actual heat capacity c
p p p

It has been shown in the preceding Article that for low amplitudes

the entropy increment is proportional to the cube of the excess shock pres-

sure p. From (3.28) one finds for small entropy changes with (3.23)

K 3(3.30) h K 
p

where K is explained in Article 3.11.

3.14 NUCLEAR BUBBLE FORMATION AND SHOCK FRONT PROCESSES.

Commonly shock wave and bubble phenomena are regarded and treated as

distinctly separate phenomena. However, there is an intimate relationship

38J



NOLTR 65-52

between these two processes for a nuclear explosion in spite of their

remoteness in space and time.

It is a well known feature of conventional underwater explosions that

the gaseous reaction products of the explosive form a bubble which oscillates.

Nuclear underwater explosions produce similar bubble phenomena, but the

nature of the bubble formation is different.

The formation of the high explosive bubble is often attributed to the

expansion of the gaseous reaction products which push the water away from

the center of the explosion. Such a mass motion overshoots the point of

pressure equilibrium and leads to pulsations of the bubble. This explanation

is not entirely precise: the pressure of the explosion products forms, first o.f

all, th6 shock wave. In the wake of such a spherical pressure wave, a flow

process, "the afterflow," is originated which results in an outward motion of

water. Such an outward flow must necessarily produce a cavity (see Article

4.11).

If a pressure wave could be generated in a body of water without an ex.-

ploded charge or a transducer at the center, the outward mass motion would

cause cavitation and, thus, a cavitation bubble. The presence of gaseous

explosion products precludes cavitation since the expanding gases fill the

cavity. The ability of the gases to expand not only permits this cavity to

grow, but also enhances the rate of growth because of their initially high

pressure. (Here, the above concept, which visualizes the gases pushing the

surrounding water outward, applies, bu As concept describes only a part of

the process.)

Nuclear bubbles are filled with steam as well as dissociated and ionized

water. It is often said that the "tremendous" heat of a nuclear explosion

vaporizes and ionizes the ambient water. This explanation is objectionable

because it will be almost always interpreted to mean that radiation produces this

effect. Only about one thousandth of the mass of the gaseous contents in a
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nuclear bubble is formed by radiation, while the rest is formed by the energy

dissipation at the shock front.

An underwater nuclear explosion resembles the above case of a spherical

pressure wave in a space consisting exclusively of water. The nuclear device

is so small when compared with the equivalent charge of common explosive

that its presence can be neglecte.. Radiation will immediately form a fire

ball which may be considered as the origin of the nuclear explosion bubble.

But, its dimension is small compared with the size of the chemical charge and

this process has little bearing on the nuclear bubble formation.

As the shock wave emerges from the fireball each water particle under-

goes an entropy change when the shock front passes over it. For very high

amplitudes, the particle is immediately dissociated by the high temperature

of the shock. At lower amplitudes, i.e., farther away from the fire ball,

the water molecule remains intact. It is not a proper question to ask as to

whether or not this particle is in the liquid cr gaseous (vapor) state because

at the exceedingly high pressures and temperatures which prevail at this

moment such a distinction cannot be made. (Only for pressures below critical

may one speak of liquids or vapors.) The point is: will this particle be in

the vapor or in the liquid state after it has isentropically expanded to the

pressures prevailing in or near the bubble?

The answer to this question can be readily obtained from the "steam

ebles" found in any book on engineering thermodynamics. Figure 3.6 is

taken from such tables. For instance, if a particle suffers an entropy

increase of AS - 1.05 BTU/°F lb, half of its mass will be vaporized, the

other half will remain liquid. (This ratio is approximately independent of the

pressure.) Suppose the pressure of the particle has dropped to just one

atmosphere after passage of the shock wave. For this pressure, a particle

is completely vaporized, if AS = 1.76 BTU/ F Lb. It remains liquid, i.e.,

it is at its boiling point, for AS = 0.312 I6TU/°F lb. These entropy increments
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depend only upon the shock front pressure and are listed in most tables on

shock parameters for water. They are plotted in Figure 3.7. The graphs of

Figures 3.6 and 3.7 permit the following statements:

Assume that the pressure in the bubble, at a specific moment, is 30 psi

absolute. One can read from Figure 3.6 that water boils at this pressure if

the entropy is AS = 0.368 BTU/°F lb. From Figure 3.7 it is seen that this

entropy increment is given to a particle which has been subjected to a shock

front pressure of about 75 kilobars. The boundary of the bubble may be de-

fined to consist of those water particles which are just at the boiling point.

The entropy of particles inside this boundary increases with decreasing dis-

tance from the center. As one proceeds from the boundary toward the center,

one finds particles of water containing small steam bubbles, then particles of

wet steam, saturated steam, superheated steam, dissociated steam, and ion-

ized steam, each state merging continuously into the next. In contrast to HE F

bubbles, neither temperature nor density are uniform throughout a nuclear bub-

ble and there is no clear cut gas-water interface. L
Assume that the pressure-distance curve of the shock wave is known and

that a peak pressure of 75 kilobars occurs at a distance R = 55 ft. Then, the

bubble contains a mass
4-r 3

=4.46"107 lb

= 22.3 kt.

This mass is in the gaseous, vapor, and liquid states, i.e., the bubble con-

tains water dissociated to various degrees, steam, and "wet" steam.

To summarize: The mass of water vaporized by a nuclear explosion de-

pends on two factors:

(Text continued on page 44).
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Figure 3.7 -Entropy Increase Incurred by a Particle Over Which a Shock
Front of Amplitude p H-as Passed.
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(a) That the lowest pressure in the bubble is reached at the moment of

maximum expansion and is substantially less than the hydrostatic pressure of

the water. (The determination of this pressure is an objective of the nuclear

bubble theory.)

(b) That the water particles suffer an entropy increment at the passage

of the shock front.

A water particle will be at the bubble interface when it has been heated

by the passage of the shock wave so that it just reaches the boiling point for

the pressure prevailing in the bubble.

One result of this situation is that the bubble interface is not fixed and

that the mass in the bubble changes. As the bubble expands, watet is evapo-

rated; when it contracts, some water is condensed. More details can be

found in Chapter VI of this book which deals with bubbles from nuclear

explosions.

These discussions show the close interrelationship between the shock

front and the nuclear bubble formation: Shock wave and bubble are

intimately connected processes.

3.15 EVAPORATION OF WATER IN CONVENTIONAL EXPLOSIONS. A

vaporization of water occurs with high explosives. Here, a small por-

tion of the water which was initially near the surface of the charge is vapor-

ized, (Snay, 1957 and 1960). This is obvious from Figure 3.6 which shows

that a water particle subjected to a shock front pressure of about 55 kilobars

is at the boiling point for 1 atm bubble pressure. HE explosions produce

much higher shock pressures. Also, for shallow explosions, the bubble

pressure may drop substantially below the atmospheric pressure. Thus, a

vaporization similar to that of nuclear bubbles occurs during common

explosions, i.e., the water at the bubble interface contains steam bubbles.

Since the shock front pressures of nuclear and conventional explosions

are roughly the same at distances which correspond to one HE charge radius,
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the amount of water evaporated by a nuclear explosion must be roughly equal

to the volume occupied by a conventional cherge of equivalent energy.

3.16 SUMMARY. A shock front is a sudden rise in pressure, particle

velocity, etc., which propagates with a characteristic velocity through the

medium. The propagation velocity is pressure dependent and approaches the

speed of sound for low amplitudes. Shock waves are pressure waves which

P!i begin with a shock front.

Shock waves are irreversible processes. There is a dissipation of energy

as a shock front passes over a particle. This means the temperature of the

particle is increased after the disturbance has subsided and the pressure has

Areturned to its original value. The energy dissipation increases with

increasing shock wave peak pressure. For vanishing amplitudes, shock waves

become reversible processes and can be treated as acoustic waves.

The entropy increase (increment) which a particle undergoes as the

shock front passes over it is a convenient tool for the determination of the

state of the particle (liquid, vapor, ionized, etc.) when the pressure sub-

sequently declines isentropically. This yields an important key for the under-

standing of the formation of the steam bubble produced by nuclear

explosions.

The amount of water vaporized by a nuclear explosion roughly corresponds

to the volume occupied by an HE charge of equal energy.
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IV. PROPERTIES OF HIGH AMPLITUDE PRESSURE WAVES

4.1 INTRODUCTION. In the following, a short outline of Riemann's

description of high amplitude pressure waves will be given. It will be noted

that no attempt is made to "solve" the differential equations of the fluid

motion, but that simple elementary transpositions of these equations will

yield the conclusion we need at this point.

The substance of this conclusion will lead to the concept of characteris-

tics. These aro a convenient and at the same time far-reaching tool for

treatment of high amplitude pressure waves.

4.2 THE EULER EQUATIONS AND THEIR TRANSFORMATION. It was

mentioned before that considerable energy dissipation occurs within shock

fronts. Outside the region of the steep pressure rise, that is, outside the

front, the dissipation remains small and can be entirely neglected in almost

all studies of explosion pressure waves. (An exception to this is the case of

long distance propagation.)

Therefore, the fluid motion behind the front is sufficiently and accurately

described by the equations of a non-viscous, compressible medium. Follow-

ing Riemann's classic example, we use equations of the Eulerian form. For a

non-viscous medium, the equations for the conservation of momentum and

mass are

(4.1) _u + u bu +- = 0
•bt br p 6r

and

_ p+ u_ + +2 up=(4.2) t r

These equations are supplemented by the requirement of a reversible or

isentropic change of state,
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(43) _+ u - 0." at 5 r

Remember that

(4.4) 6X- + 6

refers to the rate of change of the magnitude X while the position of X moves

with the velocity w. Thus

+

denotes the rate of change of a property of a fluid particle (which by defin-

ition moves with the velocity u). For instance, the term 6p/6t + up/br

which occurs in (4.2) is the rate of change of the density of a fluid particle.

Differential Equation (4.3) states that each particle retains its entropy

value, but the possibility exists that adjacent particles will have different

entropies. This holds true in the cases which interest us because entropy

increases as the shock front passes over a particle. Since this entropy

increase depends on amplitude, and since the amplitude decreases as the

front proceeds from one particle to the next, particles along a ray from the

origin will have slightly different entropies.

in view of (4.3), the term 6x/bt + u bx/br refers to an isentropic

change of the magnitude X. With the sound velocity c, defined by (2.2),

we have

(2.) s =c2
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and by virtue of (4.3)

(4.5) + U R C2 6P + uat br 6t br

Equation (4.2) can now be written in the form

(4.2a) 2 + u + P c2  + 2p0.bt br "r r

The combination of (4.1) and 4.2a) yields the following system of equations:

1 _ u+C + uu 2uc

c- + (u+ c) r -- -

(46 PC 6t PC br bt a r rL (4.6)
1 + u-c l_ 6u (u-c) 6u 2uc
PC at PC - 6t rr

In contrast to differential equation5 icrived later, these equations

are not restricted to a medium of uniform entropy.

4.3 THE RIEMANN FUNCTION. At this point Riemann (1860) achieved a

significant simplification of these equations by introducing a new magnitude

which today is commonly called the "riemann Function":
:p d

P0
(4.7) r = pc

Pc0

The integral has to be carried along a path of constant entropy, i.e., the

relationship between p as well as between, c, and P to be used in the integra-
tion are those of the isentropic (e.g. , for an ideal gas p = po (P/PoIy "

(Note tnat P designates the absolute pressure, p, the excess pressure above

the ambient pressure Po o)
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Although it has the dimension of a velocity, the Riemann Function

Cr must not be confused with the particle velocity u. It happens

that in special (and important) cases a and u have the same value,

but this is not always true. We must keep in mind that a

pressure wave is characterized by three magnitudes: the pressure,

the velocity of ihe medium, and the velocity of propagation.

Comparison with the definition (4.7) shows that the Riemann

Function is a measure of the pressure of the wave. The fact

t that this magnitude has the dimension of a velocity should not

cause confusion. (Pressure is given in various dimensions, some-

times even in units of a length, e.g., feet of water.) Note also

that a' is related, but not identical with the pressure.

With the introduction of the Riemann Function, the equations

of motion (4.6) take the form:

_o+} 2uc
6t G + u + (c + u)- a-fa + u~ -

(4.8)
__ 2uc

.-u + (Uc) a -

These equations hold for spherical symmetry and only for an

isentropic medium. The case of a plane wave (which was considered

by Riemann) is obtained by omitting the right hand side of the

equations. These equations permit the following classic

interpretation. Application of (4.4) to (4.8) shows that

the magnitude a + u propagates with the velocity c + ji and the

magnitude a- u, with u - c.
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To illustrate this statement, we consider the familiar behavior of sound

waves. Here, u is small in comparison with c and is entirely ignored in the

propagation term. Further, a is proportional to the pressure p as shown in

(4.9). Then the above statement reads: for a sound wave a + u propagates

with the sonic velocity c, and a - u, with -c. Obviously, the sign of c

indicates the direction of the propagation: the plus sign indicates propaga-

tion in the direction of + R, the minus sign in the opposite direction, i.e.,

towards the origin of the coordinates. The complete solution of the hydro-

dynamic equations for the acoustic case comprises an outward moving wave

(plus sign for u and c) and an inward moving wave (minus sign for u and c).

The same holds for high amplitude waves, except that the velocity of

propagation is ± (c ± u) where the signs again refer to the direction of the

wave motion.

4.4 APPROXIMATIONS. If we set ar = u, which is a good approximation

for a water shock wave in the region near the shock front, one finds that the

magnitudes a and u by themselves propagate with c + u. Going a step

further, one sometimes finds the statement that the pressure propagates with

c ± u, the Rieman Function thereby being replaced by pressure. It must be

remembered that such statements are sometimes useful approximations, but

that the general case refers to the sum of c + u or a- u and not to

individual parameters.

A further approximation of rather important nature concerns Riemann's

transformation and the use of the magnitude c. Equations (4.8) hold only

for a medium of uniform entropy. As discussed, the medium behind a shock

wave of varying amplitude cannot have a uniform entropy since the entropy

changes as a function of distance. The introduction of the RiemannFunction

(4.7) ignores - this fact; however, for water the entropy changes are

small. Thus, equations (4.8) are useful approximations, particularly for

low aimplitudes where the changes of entropy become negligibly small.
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4.5 SOUND WAVES. For small amplitudes, the particle velocity u in

equations (4.8) becomes negligibly small in comparison with c. In this

case, a + u propagates with the velocity c. This is why the magnitude c as

defined by (4.4) is commonly called "sound velocity," i.e., the propagation

velocity of waves of small amplitudes. Strictly speaking, c depends on the

temperature (ideal gases) or temperature and pressure (real medium).

Therefore, the velocity c varies with the amplitude of the wave, but these

variations are small for small amplitudes.

The equations of acoustic waves are obtained from equations (4.8) if u

is omitted in the terms (c + u) and (u - c), respectively. Further, c is

assumed to be a constant, c . If the sound velocity is constant, then the

density must be constant, p p . Therefore, the Riemann Function

for acoustic waves becomes

(4.9) 0 = _
0 0

where. as before, p designates the excess pressure above the ambient

value. This relation again illustrates the nature of the Riemanni unction as

a measure of the pressure amplitude.

Strictly, the acoustic approximation is applicable to the case of

infinitely small amplitudes only. However, for water it is a useful

approximation up to relatively high pressures, because the low compressi-

bility of water results in a high value of c and in small values of u.

4.6 ACCURACY OF THE ACOUSTIC APPRO)IATION. As an illustration,
consider the commonly occurring case where

(4.10) U = .

Then,
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2 F
(4.11) c +u c0 +a c (1 + p/pc C) j
if c is assumned to be a constant.

Snay et al (1956) give the following interrelationship between s-und

velocity and pressure which holds for low pressures up to approximately

1 kilobar:

(4.12) c = c (1 + Cp)

Then, with the above assumption u = a , we obtain from (4.9) and (4.12)

2
(4.13) c + u =c (1 +p ( + 1/p c

for varying c. Suitable numerical values of the constants are2 -2
P'c 0 = 22 kilobar and C = 0.108 kilobar I. Thus, for a pressure of
1450 psi (0.1 kilobar), we have c + u = 1.0045 c , if c is assumed to be

o o

a constant, c + u = 1.0153 co, if the change of c with the pressure is ac-

counted for, and c = 1.0108 c . Since 1.0153 c is the approximate value

for the propagation velocity, this example shows that the omission of u is
less serious than the assumption of a constant sound velocity. The latter

error can be reduced if the sound velocity corresponding to a higher pressure

than ambient is used for c . But, even without this device, the acoustic0

approximation is useful at much higher pressures' than that of our example.

Deviations in c + u of 5% to 10% are acceptable, so long as the magnitude

of the propagation velocity has no significant bearing on the processes con-

sidered. (An example of the latter case is the anomalous surface reflection.) F'
The acoustic approximation is =n important tool in underwater explosions

research, particularly in studies of underwater e'plosion damage where the

pressures of interest are commonly less than 1 kilobar.

The properties of a spherical acoustic wave can be descrioed by simple

equations which are summarized in Appendix A.
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For pressures higher than, say, 1 kilobar, the acoustic approximation

becomes increasingly inaccurate and fails to describe the behavior of waves

of high amplitudes.

4.7 CHARACTERISTICS. The partial differential equations (4.8) allow

for simple conclusions concerning the rate of propagation of high amplitude

waves. We shall now attempt a further interpretation of these equations. We

propose to observe the fluid motion not from a fixed station, but from a moving

station. Assume two platforms, one moving with the velocity c + u in the

positive r-direction and another moving with u - c in the negative r-direction.

If we write the hydrodynamic equations for these two moving points of

observation, the partial differential equations (4.8) are reduced to ordinary

ones. This follows immediately from an application of equation (4.4). We
obtain

I_ dp d+ d 2uc
(4.14) L a +r -= 0p c dt dt r

applicable to a point which moves with the velocity c + u (in the direction of

r). Similarly, the differential equation

(4.15) dp d u + 2u =0

pc dt dt r

holds for a point moving with the velocity u - c in the direction of -r.

Consider the travel of two such platforms. We may plot their paths in

an r-t diagram. Then, two curves are obtained which at every point have the

inclinations

dr
(4.16) d c +u

and
dr

(4.17) u - c,
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respectively. Such curves are called characteristics* and we restate: the

ordinary differential equation (4.14) holds along a (c + u)-characteristic,

and (4.15) along a (u - c)-characteristic. The (c ; u)-characteristic describes

a wave which propagates in the positive r-direction, the other, a wave going

in the negative r-direction.

Thus, we have reduced the system of partial differential equations (4.8)

into a system of ordinary differential equations. If an immediate construction

of the characteristics were possible, a relatively simple numerical integra-

tion of these ordinary differential equations would yield solutions for any

given initial condition without further complication. Since c and u depend on

the solution of equation (4.14) and equation (4.15), such a construction is,

in general, not possible. However, special cases are tractable. It is also

possible to obtain numerical solutions by means of step by step calculations,

where only a small portion of the total field of the characteristics is con-

sidered at a time (see Article 4.12).

4.8 SIMPLE PRESSURE WAVES. The concept of the characteristic

affords a convenient discussion of the behavior of high-amplitude waves.

For expediency, we begin this discussion with the so-called "simple waves."

Consider plane pressure waves without shock fronts which propagate

through a homogeneous and isentropic medium. Then, the introduction of the

Riemann Function is permissible and we obtain from equations (4.8)

(4.18a) d (a- + u) = 0 along the (c + u) -characteristic
dt

* In the mathematical theory of partial differential equations, characteristics

have a much farther-reaching significance than the kinematic interpretation
given here, e.g., see Courant and Friedrichs (1948), pages 40 to 68. For
the purpose of our study, it is not necessary to go into those more complica-
ted details.
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and

(4.18b) dt (o- u) 0 along the (u - c)-characteristic;

i.e., o- +u or or - u is constant along the respective characteristic. This

further illustrates the physical meaning of the characteristics. They describe

the propagation of a "point of the wave.

In the case of an ocean wave, one would call either the crest or the

trough, or any other specific location, a "point of the wave," implying that,

as time goes on, such a point will always remain the crest, or the trough,

etc.-In an entirely analogous way, a point of a plane pressure wave is de-

fined by a specific value of o- +u, oro- - u, respectively. These are magni- ;

tudes which do nct change as the wave moves along, in the same way the L

crest of an ocean wave remains the crest. Thus, the characteristic is the

time-distance location of a point of the wave. (For spherical waves, a-+ u and

01-u change with distance. The concept of the characteristic provides the

general although not so obvious definition of the point of the wave.) Since

each characteristic describes the motion of one point of a wave, a family of

characteristics is needed to describe the propagation of a pressure pulse.

The general plane isentropic wave, i.e., a wave having any given

value for a and u, is obtained by superposition of two waves. One of these

moves in the positive r-direction. At each point the sum of a and u remains

a constant, while the other wave moves in the negative r-direction and a - u

is constant.

The magnitudes, o- + u and (- - u, are sometimes called "Riemann

invariants." This term is appropriate for isentropic plane waves only. In all

other cases these magnitudes are not constants.

"Simple" waves are waves for which either a- = u orcr - u. Since in

the isentropic case c can be expressed as a function of - alone and since a

and u are constants along the characteristics, c and u also must be constants:

the characteristics of simple waves are straight lines and, in this case, can L-
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be immediately constructed. This has been done in Figure 4,1.

If a = u, the amplitude propagated along.the (u - c)-characteristic is

zero and it .s not necessary to consider the (u - c)-characteristic, but only

the (c + ui-characteristic, Assume that the amplitudes, namely a and u, are

given as a function of time at the distance r = r and that we wish to study
o

the propagation of this pulse. This initial condition is shown in the ampli-

tude-time diagram of Figure 4.1 where a as well as u are plotted versus t,

(the time is given in multiples of ro/co, the distance in multiples of r) .

Since a = u, only one curve is shown and is labeled r 0
0

To construct the characteristics, a relation for c is needed. For the

example of Figure 4.1, the simple equation

(4.19) c-c + 3a

has been used which gives acceptable accuracy for water in the pressure

range between 10 and 50 kilobars. The value c is the sound velocity for

p = 0. By means of equation (4.19), the sound velocity can be determined for

the initially given data. Thus, one must visualize that in the r - t plane the

initial condition of the wave, namely, values of a, u, and c, are given along

the parallel to the t-axis, r =r .

Figure 4.1 shows the characteristics emerging from this parallel r = r.

Their inclination is tan a = c + u = c + 4a. Since zero amplitude is a.;sumed
0

for the head as well as the tail end of the pulse, the.characteristics corres-

ponding to these points are parallels. (Note that the head is on the left side

in the a, t-diagram as is commonly the cnse in pressure-time diagrams. The

head passes the point of observation first (i.e., for small values of t), the

tail last (i.e., for large values of t). If a pressure-distance or a-distance

curve is considered for a constant moment of time, the head is at the right.)

In the specific case of our example, a and u are constant along each

characteristic. Hence, such characteristic diagrams may be visualized as

(Text continued on page 58).
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Figure 4.1 - Characteristic Diagram of the Propagation of a Plane Wave

The upper diagram shows the characteristics in the r-t plane. Each of
these curves gives the time-distance location of a specific property moving
with the wave. For instance, the characteristic M-M-M gives the path of
the maximum amplitude, H-H, that of the head, and T-T, that of the tail of
the pressure pulse. The broken curve S gives the path of the shock-front.

The lower diagram shows the corresponding amplitudes of the wave as
a function of time for four distances, r through r3 , marked in the r-t plane

0 3above. The graph illustrates the change of the pulse shape and the formation
of the shock-front.

Reduced magnitudes are used throughout. The amplitudes arand u are
given in multiples of c , the distance in multiples of r, the time in multi-
ples of r /c . For simplicity it is assumed that a u. [

0 0
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contour maps similar to topographic (geodetic) maps where each contour line

designates the elevation. In our diagram, the contour lines are the character-

istics and each designates constant values of the amplitudes a and u.

The higher the amplitude, the steeper the inclination of the characteristic.

The consequence of this is typical of all compression waves: some of the

characteristics converge and intersect; others diverge. This produces a

cnange of shape of the pressure pulse, namely, a steepening of the pulse for

convergent characteristics. Divergence of the characteristics results in a

flat-eing of the pulse shape. Intersection of two characteristics corresponds

to a shock front exactly as the intersection of two topographic contour lines

indicates a precipice.

4.9 FORMATION OF SHOCK FRONTS. The characteristics must terminate

at the shock line as shown in Figure 4.1, because the equations for non-

viscous fluids do not hold for the shock front. Continuation of the

characteristics beyond their intersection would lead to an overhanging face,

i.e., to the physical impossibility of having three values of ar and u at the
same time and the same space (shown in Figure 3.2).

As discussed, the Rankine-Hugoniot relations must be used to describe

the properties of the shock front. The inclination of the shock curve in the r,

t-diagram is

(4.20) r) U,

where U is the propagation velocity of the shock front. In order for a shock

front to persist, U must be smaller than c + u. This is apparent from

Figure 4.1: the shock line (loosely called U-characteristic) and the (c + u)-

characteristic must intersect, otherwise the shock line cannot form the enve-

lope of the intersections of the individual (c + u)-characteristics. For water,

U is always smaller than c + u. The expression for U, for instance, which
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corresponds toc c +3o, is U= c + 2a, therefore c +u c + 3a+uis
0 0 0

larger than U = c + 2o-. In such a case, one speaks of a "stable" shock

front.

If the shock front relations do not result in o = u, a "reflection at the

shock front" takes place. This amounts to the generation of a new wave

which originates at the shock front and runs backward into the oncoming

original wave. Such a wave is described by the (u - c)-characteristics along

which o- - u is not zero, but finite. The superposition of these two waves at

a point on the shock front must satisfy the following condition:

a +U + ( b) Ua a b= s s.

oncoming wave reflected wave As required by
Rankine-Hugoniot
condition

This reflected wave affects the entire pressure pulse and may consider-

ably change the shape and amplitude of the pulse if it has a high amplitude.

The characteristics cease to be straight lines where intersections between

(c + u)- and (u - c)-characteristics occur and neither a- nor u is constant

along them. (In Figure 4.1 the assumption has been made that crb and ub are

small.) If the Rankine-Hugoniot relations yield a- = u, such reflection atS S'

the shock front does not take place. This condition is approximately satisfied

for shock waves in water.

In the region "behind the front, " the assumption of constant entropy and

the use of the Riemann Function a must be dropped. More precisely, "behind

the shock front" refers to fluid particles over which a shock front has passed.

The path of such particles, the streamline, is given in the r-t plane by a

curve which has the same inclination at all points

dr Hr
(4.21) r u.
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It is sometimes loosely called the u-characteristic. In accordance with

equation (4.3), these are lines of constant entropy. In Figure 4. 1, only the

line which passes through the beginning of the shock line is shown. The

region below this curve is isentropic. Above this boundary line, c is a

function of two magnitudes, c and a, for example. It is obvious that the

problem is now considerably complicated. However, our conclusions on the

change of pulse shape, the formation of a shock front, lines of constant

entropy, etc., remain valid., although details cannot be as simple as those

for simple waves.

All characteristics are parallel for acoustic waves. Acoustic waves do

not change their shape and cannot form shock fronts, but shock waves can

be represented by the acoustic approximation. (See Appendix A.)

4.10 FURTHER DETAILS ON THE FORMATION OF SHOCK FRONTS. Figure

4.1 illustrated three further conclusions:

(a) Rarefaction waves have divergent characteristics and do iot form

shock fronts. In our example, the characteristic M-M refers to the maximum

of the pressute pulse. The portion of the pulse behind point M in the lower

diagram of Figure 4.1 is a rarefaction wave. The characteristics in the upper

diagram are divergent at the right-hand side of M-M. They cannot intersect

each other as time increases and cannot form a shock front, but they can

intersect with an existing shock line, as seen in Figure 4.1 where the next

characteristic at the right of M-M approaches and intersects the shock line.

(b) Shock fronts, after being formed, can be and are commonly followed

by a rarefaction wave. The lower portion of Figure 4.1 shows the develop-

ment of the a history (which roughly corresponds to the pressure history) for

four distances r , r and r

These four curves demonstrate the steepening of the compressive portion

of the pressure wave and flattening of the rarefactive portion. At the distance
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r the shock front has just been formed and is preceded by a small precursor

wave. The pressure behind the shock front continues to rise and we now have

the case where the front is followed by a compression. The shock front

recedes rapidly with respect to the remainder of the wave (because U<c + u)

and at r = r2 the front coincides with the maximum, M. From this point on, a

rarefaction immediately follows the front. Our example (which is not exag-

gerated) shows how quickly the portion of the pressure wave which precedes

the maximum of the pulse disappears so that subsequently the maximum occurs
at the front,.:,

(c) Once the maximum of a plane pressure wave is at the front, the

maximum amplitude will decrease with distance (compare the curve labeled

r in Figure 4.1). This behavior of a plane, simple shock wave is in contrast3
to that of a plane, simple pressure wave whose amplitude remains constant.

This decrease of the peak amplitude is readily explained by Figure 4.1.

The characteristics of the rarefaction phase of the wave intersect one after

the other with the shock line (only the intersection of the first characteristic,

specifically that at the right of x-x, is shown. The other intersections are

outside the field of Figure 4.1). If a reflection at the shock front does not

take place, the front assumes exactly the amplitude of the pertinent c + u

characteristic at the point of intersection. So long as each of the successive

characteristics "carries" a lower amplitude than the preceding one, the shock

front peak pressure must decrease.

If the a - t curve, labeled r2, is compared with the curve labeled r 0it

will be seen that the portion ahead of the point x has vanished. The

missing portion corresponds to the energy dissipated in the shock front.

4.11 SPHERICAL PRESSURE WAVES, AFTERFLOW, AND UNDERWATER

EXPLOSION BUBBLES. Equations (4.8) describe the case of an isentropic

spherical pressure wave. They can be interpreted as

(4.22a) d (o+u) -2uc along (c + u)-characteristics
2r
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and

(4.22b) (d - u) - 2uc along (u - c)-characteristics

Thus, (or + u) or (6 - u) are not constant along the characteristics as in the

plane case, but change accoiding to the differential equations. This formu-

lation illuminates the well known situation that the amplitude of spherical

waves decreases with increasing distance, whereas that of plane isentropic

waves remains constant. As a consequence, the characteristics are not

straight lines for spherical high amplitude waves.

Equations (4.22) have another significant consequence. Even if o- and u

are initially equal, a difference, (a - u), builds up as a shperical wave moves

ahead. Thus, both equations (4.22a) and (4.22b) are needed to determine a

end u, or in other words, the (c + u)- as well as the (u - c)- characteristics

must be used in the case of spherical waves.

This immediately raises the question: Is it possible to have a spherical

pressure wave which moves in one direction only, or does a spherical wave

generate a wave in the opposite direction, as occurs in the case of the

reflection at the shock front, Figure 4.1 ? The answer is that spherical

waves running in one direction are possible despite the need for both systems

of characteristics. But, such waves must have certain properties.

Consider a solitary pulse, i.e., a pulse where the amplitude is zero at

the head of the wave as well as at its tail end. Thus, or = 0 and u = 0 at

these points. This is possible only if the integral of the right-hand side of

equation (4.22b) vanishes. Then, for an outward going solitary wave,

t

(4.23) -uc dt = 0,r

fH

where this integral musi be carried along a (u - c)-characteristic. The limits,

tH and tT , refer to the time where head or tail, respectively, arrive at the
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(u - c)-characteristic. Figure 4.2 illustrates the characteristics as well as

the path of this integration. Excluding the trivial case u = 0 (i.e., no wave

at all), the integral (4.23) will vanish only if the integrand assumes positive

as well as negative values. Since c cannot be negative, u and a- must change

signs. This means: A solitary spherical pressure pulse must involve positive

as well as negative amplitudes.

This result is of considerable importance for underwater explosions since

it indicates the existence of the pulsating gas or steam bubble.

On the basis of physical considerations, it would be difficult to visualize

that the pressure pulses emitted from explosions would also produce backward

running waves (reflections at the shock front excluded). Pressure waves from

explosions indeed resemble solitary waves, i.e., the particle velocity

oscillates between positive and negative valies. These oscillations, which

are noticeable at large distances, are manifestations of the oscillating

bubble.

Before going into the discussion of the interrelation with the bubble, it

is necessary to stress a semantic implication: what is commonly called the

underwater explosion shock wave, comprises only one portion and not the

total of the wave emitted by the explosion. It refers to a pressure wave

which decreases with distance but is otherwise treated as a plane wave,

namely, it is assumed that o- always equals u. (The fact that shock waves

are not isentropic processes is also ignored.) Since a - u is

essentially zero at the shock front, and since the (o- u)-term builds up

slowly behind the shock front, this treatment is appropriate for the -irst

portion of the shock wave. The term ignored thereby, namely (u - o),

is called the afterflow. Hence:

Total underwater explosion pressure wave "Shock Wave" + "Afterflow.

(Text continued on page 65.)
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Fgure 4.2 - Characteristics of a Solitary Pulse.

(Low amplitudes are assumed in drawing this graph.)

The integrali (uc/r)dt must be evaluated along (u-c) characteristics such as

AB and must vanish for solitary pulses.
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Figure 4.3 shows the complete history of pressure and particle velocity

for a spherical shock wave. All magnitudes are given in dimensionless form.

The peak pressure at the shock front and the peak velocity are used to obtain

the reduced pressure -p= p/P and reduced velocity -' - u/u . The time
m m

constant 6 of the shock wave is used for the reduced time T. The figure

shows that initially = " and that the reduced afterflow iT - - is built up

slowly. The values -p, a and T change sign as is necessary for a spherical

wave running in one direction. After a prolonged period of negative pressure,

a secondary pressure pulse appears. Pressure and velocity will continue to

oscillate in this fashion.

These pressure oscillations correspond to the bubble pulsations. The

bubble maximum will occur at the point where V becomes negative and _p

reaches a minimum. The second positive pressure pulse is called the bubble

pulse. It is emitted when the bubble has contracted to its minimum size.

For plane waves a and u coincide, and there is no afterflow; therefore,

plane pressure waves cannot produce a pulsating bubble.

The afterflow decreases with the square of the distance from the origin

(see Appendix A). This means the afterflow has a pro:,ounced effect at small

distances. The motion of the bubble corresponds exactly to the afterflow

evaluated for the particle which forms the bubble interface. Strict calcula-

tions are difficult; however, useful approximations can be made on the basis

that the afterflow corresponds roughly to an incompre'ssible fluid motion, as

further discussed in Appendix A.

The definition of the shock wave given above needs further development.

If we consider the pressure history by itself, the question arises as to which

portion of the pressure record should be attributed to the bubble and which to

the shock wave. The second pressure pulse shown in Figure 4.3 as well as

the underpressure phase are clearly "bubble phencmena." When retracing the

pressure record toward the shock front, a term will appear which is not

connected with the bubble. One might be inclined to call this portion "the

(Text continued on page 67). 65
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shock wave" and the remainder of the pressure curve "the bubble pulse."

Present usage goes in this direction, but a clear distinction is not usually

made.

Since bubble phenomena are dependent on the hydrostatic pressure, the

following definition of the "shock wave" suggests itself:

The shock wave, in the restricted sense, is that portion of the

pressure pulse which is independent of depth.

Extreme depths, say, more than 2 miles, should be excluded since a slight

depth-effect on the shock wave might become noticeable. The phrase
"restricted sense" is used because any pressure pulse beginning with a shock

front is a shock wave.
According to the above definition, the shock wave can be strict.y scaled

by Hopkinson's Rule, i.e., the cube root scaling law (compare Chapter III of

this book). Bubble phenomena cannot be scaled by ttis rule, therefore the

tail of the shock wave, which clearly contains bubble components, cannot

be scaled by this method.

4.12 COMPUTATIONAL METHODS. The introduction of the character-

istics in Article 4.7 reduced the partial differential equations of the non-

viscous fluid motion into ordinary ones. Although one may argue that the

numerical integration of ordinary differential equations offers fewer problems

than the numerical solution of partial differential equations, no great

advantage is gained in the general case because the network of the

characteristics cannot be constructed separately, but depends on the

solution of the whole problem.

A separate construction of the characteristics was possible in the simple

case of Figure 4.1 and has been described in Article 4.8. A similar process

is possible if only a "small" area of the r-t plane is considered at a time.

The ordinary differential equations are numerically integrated along "short"
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stretches of the characteristics. In this way, the network of cha,.'acteristics

and the solution along them can be calculated step by step in an analogous

way to the simple case of Figure 4.1.

The introduction of electronic computers gave a great impetus tc such

calculations. In fact, only those computers have made such calculations

feasible, although valiant efforts had been previously made using desk com-

puters and graphical methods (Pfeiffer and Meier Koenig, 1943).

Even though this "method of characteristics" is suitable for calculations

of compressible fluid motions and constitutes the classic approach, it has

not found widespread use in the field of explosions. This is because the

method of von Neunann-,Richtmyer (1950), which accomplishes a direct

numerical step by step integration of the partial differential equations, is

simpler in many respects. One of its advantages is that no special provisions

are necessary for shock fronts. In the method of characteristics, a strict

distinction between the c ± u characteristics and the U (or shock) character-

istiu must be made which is cumbersome, yet yields sharp shock fronts and

permits the use of the equation of the non-viscous fluid motion behind the

front. The von Neumann- Richtmyer method uses Lagrange-type equations

which include a viscosity term. This makes it possible to integrate over the

shock front. Because of the finite mesh size, the shock front does not appear

sharp but as a rather gradual rise with the width of the front unrealistically

wide. The shock wave has a rounded maximum which is often somewhat

lower than the actual peak. Also, under some conditions the region behind

the front is adversely affected. These disadvantages have been partly

reduced by an improved version of the viscosity term which is not rigorous for

the hydrodynamic partial differential equations, but is tailored for the finite

difference method in such a way that the viscous effect is greatly enhanced

for the shock region. Still, estimates and experien ;e are necessary to locate

the position of the front and to determine the shock wave peak pressure.
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These peculiarities of the von Neumann- Rlchtmyer method by no means

detract from its immense value. It is widely and successfully used in the

field of explosions. Improvements are constantly being made such as the

"particle in cell" or "energy in cell" methods. Shortcomings are being
eliminated.

These powerful tools have not found widespread use in the field of

nuclear underwater explosions. For this reason, an explicit description

of these methods is omitted in this paper. There Is no doubt that in the

near future important results will be obtained with these methods. Therefore,

it is planned to devote a full section to this subject in the second edition

of this paper.

4. 13 SUMMARY. Fligh amplitude pressure waves propagate with the

velocity c + u in the positive r-direction and, with u-c in the negative

r-direction. The pulse shape of such waves changes as they propagate

through the medium. If the initial rise of the pressure at the head of the wave

is gradual, the steepness of this rise will increase until a shock front is

formed.

For acoustic pressure waves, i.e., waves of small amplitude, the

particle velocity u is negligibly small compared with the sound velocity c.

For small amplitudes, c is a constant. Such waves propagate with a constant

velocity c, the sound velocity. They do not change their shape and cannot

form a shock front.

For underwater explosions, the acoustic approximation often gives a

sufficiently accurate description of the flow process and is an indispensable

tool for the solution of interaction problems.

Outward moving spherical pressure waves leave a mass flow behind, the

afterflow. This flow leads to the formation of a cavity, namely, the under-

water explosion bubble in the zase of common explosions, a steam bubble for

nuclear explosions, and a cavitation bubble in the case of gasless explosions

or strong solitary waves produced by suitable transducers.
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APPENDIX A

ACOUSTIC WAVES

AlI. 1 SIGNIFICANCE OF THE ACOUSTIC APPROXIMATION. In Article 4.6

it was shown that the accuracy of the acoustic approximation remains accept-

able for an underwater pressure wave if the amplitude does not exceed

pressures of 1 kilobar, for example. An additional restriction is that only

propagation over relatively short ranges be considered. For long range propa-

gation of explosion waves, high amplitude effects cannot be omitted, even at

very low pressures. An example is the anomalous surface reflection,

Rosenbaum-Snay (1956), where minute high-amplitude (non-linear) effects

build up and ultimately produce a drastic deviation from the result of the

acoustic theory.

The acoustic theory Is a linear theory and affords analytical solutions

which often are of considerable complexity but are tractable. For high ampli-

tude waves the complexities are almost insurmountable even when high-speed

electronic computers are used. Examples are: reflections of shock waves

from elastic or porous bottoms or their refraction by the Inhomogeneity of the

ocean; cavitation processes; interactions with yielding structures; etc. In

these cases, the acoustic approximation is an indispensable tool.

A2.2 VELOCITY POTENTIAL AND WAVE EQUATION. As discussed in

Article 4.5, the acoustic approximation can be obtained if the particle velocity

u is ignored in comparison with the sound velocity c, i.e., if the Mach

number is zero. The hydrodynamic equations (4.8) have a solution in this

case which will be shown presently.

A fluid motion of this type is irrotational, as discussed In Article 2.7,

and such motions can be described by a velocity potential 9 which is

defined by
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(Al. .1) - U,

where "u is the velocity vector, p is a scalar and equation (Al. 1) states that ,

the gradient of the velocity potential is the velocity vector.

,P For the case of a spherical fluid motion considered in this paper,

equation (Al .1) becomes simply

(Al .2) U

If the velocity potential is introduced into the properly simplified hydro-

dynamic equations (e.g. (4.8) with u omitted in the propagation term ± (c ±u)

and c set constant = c) one obtains the wave equation,0

A 2 1 2
(Al.3) V c =t c 2 at 2

The subscript o designates the constancy of c. For simplicity, this

subscript will be omitted. For a spherical wave, equation (Al .3) has the

general solution,

(t

1 1

which represents the inward and outward running waves discussed in Article

4.3. f and g are arbitrary functions of the arguments (t-r/c) and (t+r/c).

These arguments are often called the "retarded times." CM, iously, r/c is

the time required for the wave to travel from the origin of the coordinates to

the distance r, while t-r/c marks the time when the head of the wave or any

other characteristic point of the wave leaves the origin. (In the language of

* Independent variables. [
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explosion research, it is said that t counts time from the moment of explosion

and r measures the distance from the center of the explosion.)

The function f has always the same value at an equal retarded time.

(The analogous statement can be made for g.) This corresponds to the moving

platform of Article 4.7 from which a "point of the wave" is observed. In our
case, f and g retain their value when seen from these points of observation.

The equations t-r/c = const. and t+r/c = const. are equations of the

characteristics. As discussed in Article 4.7, they are straight lines for

acoustic waves.

The particle velocity of a spherical acoustic wave follows immediately
from (Al. 2), viz. ,

(Al.S5) U = -1 f'(t-r/c) + L f (t-r/c)r r2

+ -g'(t+r/c) + 1 g(t+r/c),
r ~ r2

where the prime designates the derivative of f or g with respect to its

argument. it is seen that the particle velocity of each wave consists of

two terms, f' and f or g' and g, where f and g represent the afterflow

discussed in Article 4.11.

The pressure of an acoustic wave is given by

(Al.6) p = p _eat"

This relation %stems from the "Bernoulli Equation" which will be described

below.

With (Al.4) we obtain for the pressure

(A1.7) p = pc f'(t-r/c) - pc g'(t+r/c).

(Note that g' must be negative for a compression wave. This yields a nega-

tive particle velocity for the inward moving wave in acuordance with the
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remarks made in Article 4.3.) The density p and the sound velocity c are

constants in the acoustic theory. Their product pc is called the acoustic

impedance. For water, pc changes slightly with the temperature T:

pc = 5.14 + 0.0144 T(*C) for fresh water or

pc = 5.58 + 0.0065 T(*C) for sea water.

The units of Pc given above are in psi.sec/inch.

Remembering the definition of the Riemann Function, (4.7) or (4,9), we

can write

u= O+- f.?". g and
(Al. 8)r r

r r

This relation has been used to construct Figure 4.3.

For an outward moving wave, the following formulation is useful:

p(r,t) =- fl (t-c/r) and

(Al .9)

u(r,t) - p) - 1 tj p(r,t)dt.

0

Here, the lower limit t refers to the moment where o- = u.
0

Al .3 UNDERWATER EXPLOSION WAVES AND BUBBLES. An approximate

expression for an underwater explosion shock wave is

P p1 a1 -(t-r/c)/ andP = r e -
uI al [e-(t-r/c)/0

(Al 10) u = r e-
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with

= pl/p c.

Here, p1 is the shock wave peak pressure at the distance r =a and 6 is the

time constant of the wave.

The "time constant" of an acoustic wave is a true constant, whereas

t ~e~ ~S~.algh- amplitude wave changes with distance. This reflects the

statements of Article 4.8 that pressure waves change their shape as they

propagate, but that acoustic waves retain their shape.

According to the above equations, the pressure of an acoustic wave de-

creases inversely proportionally with distance. No energy dissipation occurs

with this mode of propagation. Underwater explosion shock waves dissipate

energy and, therefore, decay more strongly with distance. The peak piessure

and time constant are functions of the charge weight W (in lb.) and distance

R (in ft.). For TNT they read as follows:

Pmax = 21,600 psi

(AllW /-0.22

6 = 0.056 W 3  millisec.

The acoustic equations (Al.10) are particularly useful and accurate, if

applied to distances that are not very different from a 1 and if p1 and 6 are

calculated for R = a1 using (Al.11). If c = c(pI) is introduced, an exact

linearization of the problem is obtained (compare with Article 4.6). This

method, however, is not the only one which allows for an adaptation of the

acoustic approximation to explosion shock waves. These methods depend

on the nature of the problem and their discussion goes beyond the scope of

this outline. Many utilize the fact that the greatest difference between

these two types of waves occur near the shock front and that the remainder

of the wave behaves essentially like an acoustic wave.
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Returning to equation (Al. 10), we note that the term in the brackets

represents the afterflow. For t>>8, we obtain for the particle velocity

u1 c 9a 1

(Al.12) u 2 for t >>6

which is equivalent to

2
a a

(Al. 12a) r2

where a' = u I c @/a is the velocity at r = a.

This expression is interesting in two respects. We may interpret a as

the radius of the explosion bubble (of either a nuclear or chemical explosion).

Since 8 is very small in comparison with typical times of the bubble motion

(the period of the bubble pulsation may be 100 times larger than 0), the

assumption t>>6 is appropriate. Further, the pressures connected with the

bubble motion are low which, to some extent, justifies the acoustic treatment

(see, however, Article A1.5).

Expression (Al. 12a) leads to the following conclusions:

(a) This relation is exactly that of the incompressible fluid motion.

Hence, the afterflow resembles the motion of an incompressible fluid,

although this term has been obtained from the equations of a compression

wave where compressibility is the predominant factor. Since the afterflow

is the important process that causes the bubble expansion and pulsation, the

use of the equations of the incompressible fluid motion in the bubble theory

appears to be justified. The classic bubble theory indeed uses this fluid

model with success. However, the afterflow is only a part of the total

phenomenon. The classic bubble theory, therefore, is an approximation and,

consequently, special methods are needed to make it useful for practical

applications.

(b) The velocity a* in (Al. 12a) is constant. Thus, the bubble caused

by the pressure wave equation (Al.10) keeps on expanding indefinitely.
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We conclude that equation (Al .10) is an unrealistic description of a solitary

pressure wave. As described in Article 4.11, a solitary pulse must include

positive as well as negative pressure phases. The strict conditions are

given there. For an acoustic wave, it appears from equation (Al.10) that the

total impulse, i.e., the pressure-time integral extended to t-,-co, must

vanish.

Although the equation (A!. 10) for the "exponential pressure wave" is,

strictly speaking, incorrect if used for long durations, it is very useful to

describe the first part of the shock wave.

A1.4 THE ACOUSTIC APPROXIMATION OF A SHOCK FRONT. Frequently,

the question is ra-..sed: Can a shock wave be represented by an acoustic

wave? Equations (Al.10) do that. The statements

p= 0 fort<r/c

(AP.13) p a1  - (t-r/c)/0 fr for t >r/c

u p/pc + afterflow

describe a discontinuity interpretable as a shock front. For low amplitudes,

these relations satisfy the Rankine-Hugoniot conditions.

Physically, a low amplitude wave of this type may be realized by setting

a spherical membrane impulsively into suitable motion. For a limited range

of propagation, an acoustic wave having a steep front will result.

However, to summarize the previous statements of this paper: (a)

Acoustic waves cannot lead to the formation of a shock front during their

propagation. (b) In contrast to high amplitude waves, acoustic waves retain
their shape. (c) The wave equation (Al.1) and its solutions discussed here
do not include terms which account for an energy dissipation.

The latter point deserves further elaboration. Even in the above

described physical model of a very weak shock wave, energy dissipation will
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become apparent when propagation over a long range is considered. The

decay of the pressure will be stronger than r - , the front will broaden, and

the peak will be rounded more and more, as in Figure 2.3. This means

effects of viscosity will be exhibited, and we see that the acoustic treatment

is an approximation which, when properly used, can be of the greatest value,

but which can also lead the unwary astray.

At this time, a point may be clarified which has often caused confusion

between acousticians and the workers in the field of explosions:

In Article 4.2, as well as in many other treatments of explosion shock

waves, the assumption is made that the wave behind the front is sufficiently

and accurately described by the equations of the non-viscous, compressible

fluid motion. All viscosity effects are assumed to occur within the shock

front, i.e., within the region x-x in Figure 2.3. Acousticians often claim

that viscosity effects must not be restricted in this way and that they must

be considered for the entire wave.

This discrepancy of opinions arises from the different ranges of propaga-

tion which are of interest in these two fields. Acousticians consider

propagation over large distances where the front becomes wide and distinctly

rounded and where viscosity effects are definitely noticeable behind the

front. The ranges of propagation of interest in weapon effects studies are

short in comparison. Here, a sharp, discontinuous shock front occurs and

viscosity effects behind the front are negligibly small.

Al.5 THE BERNOULLI EQUATION AND THE KIRKWOOD-BETHE

PROPAGATION THEORY. If the velocity potential, equation (Al..1), is intro-
duced into the first hydrodynamic equation (4.1), an integration becomes

possible for an isentropic flow (compare with Article 4.3):

(AI 14) a+ u2 +d - =
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This is the generalized Bernoulli Equation. The integral over P resembles the
RiemannpFunction (4.7), and it must be carried along a path of constant
entropy. The magnitude is the enthalpy (heat content) of the medium desig-

nated by H or sometimes by w. For an incompressible medium as well as the

acoustic approximation, we have

RP-P0.Enthalpy H w = dP p-Po
p - p -p

(Al .15) 0

P-P
Riemann Functiono = - P - PC

0

For explosion phenomena, the medium at infinity may be considered to be

at rest and having the pressure P . This determines the integration constant
0

in equation (Al.14) as follows:

S 2 / P

(Al.16) - - + 0at 2 P
0

If the effect of gravity is introduced and equation (Al. 15) is used for the

enthalpy, one obtains

P-P
(Al. 17) - - - +  + ---- + gz = 0.

at 2 P I
Here, z is the height above the level where P0 is measured, P - pgz being

the absolute hydrostatic pressure.

The equations (Al.14), (Al.16), etc., hold generally for all flow patterns

if for u the total resultant velocity,

(Al.18) u 2  (v) 2 ,

is used.
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It must be stressed that the Bernoulli Equation holds only for irrotational $
and isentropic fluid motion.

In the acoustic approximation (Al .6) the Bernoulli Equation (Al .16) is
" u~2/

used setting the excess pressure p = P-P + gpz and omitting 2 /2, This0
omission is appropriate since the acoustic approximation considers a flow of

o 2
zero Mach number M = u/c. Since p/p is of the order of magniLude uc, u is

of the order uM in (Al .17).

For an incompressible fluid motion, u2 /2 cannot be omitted in the

Bernoulli Equation because it is often the most important term. Also, in

calculations of bubble phenomena this term should be retained.

Kirkwood-Bethe (1942) have used the Bernoulli Equation for the develop-

ment of a propagation theory for high-amplitude waves in water. The central

point of this theory can be very readily stated. These workers simply set

(Al .19) a- G

at- r

and introduce this magnitude into the Bernoulli Equation. The reduced time

is defined by

(Al .20) -t -fSL + const.

Thus G is evaluated along the (c+u)-characteristic. The calculation of

is not straight forward and constitutes an essential part of the theory.

Although the original Kirkwood-Bethe theory is superseded by more

accurate and simpler methods, the assumption (Al.19) is still of great

interest today, since it is applicable to other problems, e.g., to bubble

theory. Tne justification of this assumption has been widely debated. First

of all, it holds for isentropic processes only. Shock waves in water

approximately satisfy this condition even at relatively high pressures. (For

a shock wave peak pressure of around 65 kilobars, the water is 1000C warmer

after the passage of the front. The compressibility of water is not very
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* sensitive to such temperature changes. Vaporization is no problem in the

domain of high amplitude waves.)

Kirkwood and Bethe have argued that equation (A1.19) and (A1.20) are

exact for small disturbances as well as for incompressible fluid motion.

Whitham (1953) gives the following interpretation: For the incompressible

fluid motion the-characteristics degenerate into lines t = const., since c is

infinite. Hence, aIP/at = - G()/r is constant along the characteristics in

these .wo cases. On this basis, the Kirkwood-Bethe approximation is a

reasonable assunption. This is further supported by an error estimate which

gave favorable results. However, as the authors stress, a rigorous proof

that G(') possesses the properties hypothetically ascribed to it appears to

be prohibitively difficult.

Therefore, the Kirkwood-Bethe propagation theory is a valuable approxi-

mation and its use seems justified until it can be supplemented by a better

theory. Whitham (1953) has independently obtained a theory in 1951 which

has much in common with that of Kirkwood-Bethe. Both theories use the

approximation (Al.19) and (AI.20).
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APPENDIX B

COMMENTS ON THE ENTROPY CONCEPT

Entropy plays a profound role in almost all fields of natural sciences

from biology to information theory to music. Therefore, simple explanations

must necessarily fail to provide a complete picture. No wonder that some

complain: "I have heard seven explanations, but did not understand a single

one." With great reluctance this writer offers the following comments

taiiored to our specific problem.

The state of a fluid is described by two magnitudes, e.g., pressure,

temperature, or density if the equation of state is given. If the specific

heats are known, one can calculate the internal energy, the enthalpy, the

free energy, the entropy and other variables. Any two of these magnitudes

can be used equally well to describe the state of the fluid.

For our purposes, we are not interested in the entropy at a specific

state, but in the entropy of a process. The second law of thermodynamics

states that the entropy of a process "occurring in an isolated system" cannot

decrease. It turns out that the entropy change is a quantitative measure of

the irreversibility of the process.

To elaborate on the concept of the isolated system, consider four

examples, (a) through (d),.

(a) Visualize a completely gas-tight piston which moves in a gas-filled

cylinder. All inside walls are equipped with a perfect thermal insulation.

If we push the piston inward the pressure and temperature of the gas

will rise. Owing to the perfect insulation, there will be no heat conduction F

to the walls. Upon returning to the original position of the piston, the

The notion must be slow so that the formation of shocks is prevented.
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initial pressure and temperature are obtained: the process is reversible and

the term "isolated system" refers in this casetothe insulation which prevented

a heat loss by conduction.

(b) Assume that the walls of the cylinder are not insulated and that they

are cooled. As the temperature of the gas rises upon compression, heat

will be transferred to the cooled walls. If the piston is returned to the posi-

tion where the original pressure is reached, the temperature will be below its

initial value. This process is irreversible. The temperature difference

becomes larger and larger as the number of compressions is increased.

The entropy change of such a process is

T

(A2.1) 4S = c In T-0

where c =- heat capacity at constant pressure, T = initial temperature, andp 0

TI = temperature at the end of the cycle.

In this case, the isolated system is comprised of the cylinder and the

cooling agent.

(c) We return to the insulated cylinder and assume that it is equipped

with a narrow nozzle through which the gas is pressed. Such a nozzle will

produce a drag, i.e., a dissipation of the mechanical energy. Consequently,

the temperature is higher when the piston is returned to the point of the initial

pressure. This process is also irreversible. The entropy change in this

case is

T1

(A2.2) AS = cp nT

0

(in thermodynamics delicate rules determine the signs of the variables, so

that the signs of AT are opposite in (A2.1) and (A2"2)).

Mechanical work must be done to move the piston. In the reversible

case the total work of compression and expansion is zero. In the other two
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cases, a finite amount of work must be expended to bring the cylinder back

to the position of the initial pressure. In one case the energy difference is

found in the heated cooling agent, in the other case, in the heated gas. In

practical machines this energy is usually a total loss. The second law of

thermodynamics states that this energy is degraded and has lost a portion of

its ability to do mechanical work. One may think of vaporizing the cooling

water and using it to drive a steam engine. But only a fraction of the energy

transmitted to the cooling water can be recovered by such a device. The

entropy is a measure of this energy degradation. No degradation occurs in a

reversible process, but almost all processes in nature show a degradation.

The opposite of an irreversible process (which amounts to an upgrading)

is a physical impossibility called a perpetuum mobile of the second kind. In

this case, the entropy would decrease.

The term "adiabatic" refers to processes in insulated systems, i.e.,

absence of heat conduction. Example (c) shows that an adiabatic process

must not necessarily be an isentropic one. It is interesting to note that this

very obvious distinction between adiabats and isentropes came only very

recently (around World War II) into common usage.

When proceeding to Part III of this paper, the reader will notice that

process (a) corresponds to common sound waves (Laplace), process (c) to

shock waves, and that process (b) is related to Newton's approach of

describing pressure waves.

(d) Although not essential for our purposes, we shall complete the

discussion of the concept of the "isolated system" by considering an

internal combustion engine. Assume that heat is added to the gas (e.g., by

combustion) when the piston has reached the innermost position. For

simplicity, we assume that the cylinder is isolated. (The net mechanical
work done by the piston is positive, i.e. , this device transforms thermal
into mechanical energy.) In this case, one finds that the entropy of the gas

has increased. This is because the isolated system comprises not only the L
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gas in the cylinder, but also the heat source. The entropy of the combined

system increases.

If the heat is to be provided by the combustion of gasoline, the question

of the entropy of gasoline will arise. It is not very different from that of

water. In our case, the latent chemical energy of fuel must be considered.

Carrying out the "pertinent calculations, one will find a substantial degrada-

tion of the ability of gasoline to do work.

In this sense, one nkust understand the statement that the entropy of the

universe increases and approaches a maximum: First, the universe is clearly

an isolated system and secondly, almost all natural processes are

irreversible, i.e., there is a continuous degradation in the sense stated

above.
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